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Abstract—It has been shown that a large number of com-
putationally difficult problems can be equivalently reformulated
into quadratically constrained quadratic programs (QCQPs) in
the literature of power systems. Due to the NP-hardness of
general QCQPs, main effort of this stream of problems has been
put into deriving near-optimal solutions with low computational
complexity. Recently, semidefinite programming (SDP) relaxation
has been recognized as a promising technique to solve QCQPs
from various applications such as the alternating current (AC)
optimal power flow (OPF) problem. However, this technique has
not been guaranteed to achieve a rank-one solution, which is a
necessary condition to recover a feasible solution of the original
QCQPs. In this paper, instead of investigating the conditions
under which a rank-one solution exists, we propose a general
solution framework to derive near-optimal but rank-one solutions
for the SDP relaxation of QCQPs. In the proposed algorithm, all
the parameters are provided in a systematic manner. In order
to demonstrate the effectiveness of our method, the proposed
algorithm is applied to solve the AC-OPF and state estimation
problems in various settings. Extensive numerical results show
that our method succeeds in obtaining rank-one solutions in all
our case studies and only small optimality gaps are induced by
our approach.

Index Terms—Quadratically constrained quadratic program
(QCQP), semidefinite programming (SDP), rank approximation.

I. INTRODUCTION

MANY problems in power systems can be formulated as
quadratically constrained quadratic programs (QCQPs).

One example is the alternating current (AC) optimal power
flow (OPF) problem [1]–[3], which is the core problem of
power system operation and control. It can be formulated
as a QCQP since the power flow equations are quadratic
in bus voltages when the rectangular form of the complex
voltage is used [1]. Another example is the strategic bidding
problem in the electricity market with a bi-level optimization
formulation [4], [5]. This bi-level problem can be equivalently
transformed to a single-level QCQP by replacing its lower-
level problem, which is a linear program, with its Karush-
Kuhn-Tucker (KKT) optimality conditions. In general, QCQPs
are known to be NP-hard [6] and computationally difficult.
Thus, a main stream of literature has been focusing on
developing low-complexity algorithms to achieve near-optimal
solutions instead of searching for the optimal solutions.

Recently, the semidefinite programming (SDP) relaxation
technique has been used widely to solve QCQPs [7]–[9].
In [7], the authors propose a spatial branch-and-cut (SBC)
approach to solve QCQPs with complex bounded variables
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(CQCQP). They use a complex SDP formulation strengthened
with valid inequalities that are derived from the convex hull
description of a nonconvex set of 2 × 2 positive semidefinite
Hermitian matrices subject to a rank-one constraint. Their
proposed branching methods based on the rank-one constraint
can result in better performance compared to the benchmark
reliability branching method. In [8], a systematic study of the
quadratic convex (QC) relaxation for AC optimal power flow
problems is presented. Their main theoretical result shows
that the QC relaxation is stronger than the second-order cone
(SOC) relaxation and neither dominates nor is dominated by
the SDP relaxation. In [9], the authors introduce an exact
reformulation of the SDP relaxation for OPF problems in order
to deal with the issue that SDP solvers usually suffer from a
lack of scalability. The proposed formulation is constrained
by a set of polynomial constraints defined in the space of
real variables. The new constraints can be seen as "cuts",
strengthening weaker second-order cone relaxations and they
show that a significant gain in computational efficiency can be
achieved by their method compared to a standard SDP solver
approach.

By solving the SDP relaxation problem of a QCQP, a lower
bound of the original minimization problem can be achieved.
Furthermore, it has been shown that the gap between the
lower bound and the optimal objective value is bounded under
specific conditions [10]–[12].

However, one important issue of the SDP relaxation tech-
nique is how to recover a feasible solution of the original
QCQP from the solution of the SDP relaxation problem.
Particularly, if the optimal solution of the SDP relaxation
problem is rank-one, the optimal solution of the original
QCQP can be reconstructed accordingly by a standard method
[12]. Nevertheless, it is not guaranteed that the SDP relaxation
problem can achieve rank-one solutions. In the example of
OPF-based optimization problems [13], [14], the sufficient
conditions for the existence of rank-one solutions by SDP
relaxation have been studied. However, these conditions cannot
always be met, especially when there are strict line-flow limits
[15]. In that case, how to obtain a rank-one solution with
a small loss of optimality is an inevitable yet challenging
problem. An intuitive approach is to project the high rank
solution to the nearest rank-one matrix, but the quality of
the resulting solution is not guaranteed. Another technique
is to enforce the SDP relaxation problem to achieve low-
rank solutions by incorporating a rank penalty term into its
objective [16]. In the literature, the rank penalty functions
are chosen as the total reactive power generation [16], the
apparent power loss [2] or the functions derived from the
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network Laplacian matrix [17]. However, these methods are
just heuristics to enforce low rank solutions, and thus, they
are not guaranteed to yield rank-one solutions. Molzahn et al.
[18] apply a high-order moment relaxation method, which is a
generalization of the SDP relaxation, to solve OPF problems.
But feasible solutions can only be obtained in the cases with
sufficiently high relaxation orders, which are computational
challenging. You et al. [19] try to obtain a rank-one solution
of the OPF problems in a heuristic way based on alternating
direction method of multipliers (ADMM). In each iteration,
they propose to solve a convex program without the rank
constraint, followed by a polishing step to enforce rank-
one solutions through singular value decomposition. However,
their method cannot be guaranteed to converge because of the
non-convexity of OPF problems.

In this paper, a solution framework is proposed to obtain
rank-one solutions for the SDP relaxation of QCQPs. Our
basic idea is also to add a rank penalty to the objective of
the SDP relaxation problem to enforce a low rank solution.
Instead of using the heuristic penalty functions in the existing
works [2], [16], [17], we propose to approximate the rank
penalty with some smooth functions, which are controllable in
accuracy, and apply the majorization-miminization (MM) tech-
nique to iteratively solve the approximate problem. Compared
with those penalization methods for OPF-based problems in
the literature, the main advantages of our approach can be
summarized as follows.

1) Our framework is generic and not limited to OPF prob-
lems because we directly approximate the rank function,
which is not problem specific at all. In fact, any problem
that can be equivalently formulated into QCQPs can be
solved by the proposed method.

2) Both feasibility and convergence are guaranteed by our
method. In particular, the optimal solution of the SDP
relaxation with the approximate rank penalty converges
to that of the original problem as the approximation
parameter goes to zero. Moreover, it is ensured that
our proposed algorithm converges to a feasible rank-one
solution, which is at least a stationary point of the original
problem.

3) The penalization parameters are provided in a systematic
manner, which facilitates the use of this method, in con-
trast to those methods requiring the choice of appropriate
penalization parameters [17].

4) A global exploration method is proposed to improve the
solution quality by a local smoothing technique.

The rest of the paper is organized as follows. In Section II, the
SDP relaxation for QCQPs is provided. The proposed rank-
one solution framework based on rank penalty approximation
and the MM technique are provided in details in Section III.
The global search based on the local smoothing technique is
introduced in Section IV. Case studies with application to OPF
problems are presented in Section V and the application of our
method on the state estimation problems is given in Section
VI, followed by conclusions in Section VII.

Notations: Rn, Rn+, Sn and Sn+ denote the n-dimensional
real space, the set of n-dimensional non-negative real vectors,

the set of real symmetric n × n matrices and the set of real
n×n positive semidefinite (PSD) matrices, respectively. Super-
scripts T and ∗ denote the transpose operator and conjugate
transpose operator, respectively. Tr denotes the matrix trace
operator and the inner product on matrix space is denoted by
〈W ,V 〉=Tr(W TV ). Re{x} and Im{x} denote the real and
imaginary part of x, respectively. The Frobenius norm and
the nuclear norm are denoted by ||W ||F=

√
〈W ,W 〉 and

||W ||∗=Tr(
√
W ∗W ), respectively. The standard basis vec-

tors in Rn are denoted as e1, e2, . . . en and diag(x),x ∈ Rn
is a diagonal matrix whose diagonal entries are the elements
of x.

II. SDP RELAXATION FOR QCQPS

A QCQP is an optimization problem whose objective func-
tion and constraints are both quadratic functions. For simplic-
ity, we focus on the SDP relaxation for homogeneous QCQPs
since all the inhomogeneous problems can be homogenized (as
shown in Appendix A). The standard form of homogeneous
QCQPs is as follows:

minimize
x∈Rn

xTA0x

subject to xTAix ≤ bi, i = 1, . . . ,m,
(1)

where bi ∈ R and A0, Ai ∈ Sn. In general, QCQPs are
nonconvex and they are convex only when all the Ai � 0, i =
0, . . . ,m, which means they are PSD matrices.

By noting that

xTAix = Tr(xTAix) = Tr(Aixx
T ),

we introduce a new matrix variable W = xxT and Problem
(1) can be equivalently formulated in terms of W :

minimize
W∈Sn

Tr(A0W )

subject to W � 0, Tr(AiW ) ≤ bi, i = 1, . . . ,m,

rank(W ) = 1.

(2)

By removing the nonconvex rank constraint, Problem (2) is
relaxed into an SDP, namely,

minimize
W∈Sn

Tr(A0W )

subject to W � 0, Tr(AiW ) ≤ bi, i = 1, . . . ,m.
(3)

Note that being the SDP relaxation of Problem (2), Problem
(3) is convex and can be solved efficiently by existing com-
mercial solvers. In general, the optimal objective value of the
SDP relaxation (3) is a lower bound of the optimal value
of the original Problem (2). If the optimal solution of the
SDP relaxation, W opt, is rank-one, the optimal solution of the
original QCQP, xopt, can be recovered from W opt by solving
W opt = xopt(xopt)T . However, if the rank of W opt is larger
than one, it is a critical issue to convert W opt into the optimal
solution of the original QCQP. In fact, it is even nontrivial
to transform W opt into a feasible solution of the QCQP. In
the following section, we will introduce our rank penalization
method to induce a rank-one near-optimal solution of Problem
(2).
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III. RANK-ONE SOLUTION FRAMEWORK FOR SDP
RELAXATION

In this section, we first introduce the approximation ap-
proach for the rank function and then, leverage the MM
method to solve the approximate problem.

A. Approximating the rank function

In order to enforce a low rank solution of the SDP relax-
ation, we add the rank of the matrix variable into the objective
function with a weighting factor η > 0 and the resulting
problem is as follows:

minimize
W∈Sn

Tr(A0W ) + η · rank(W )

subject to W � 0, Tr(AiW ) ≤ bi, i = 1, . . . ,m.
(4)

By defining Problem (4), we move the difficulty brought by
the nonconvex rank constraint to the objective. Note that this
approach can be considered as a Lagrangian relaxation of
the rank-one constraint if we take η as the dual variable
of the rank-one constraint [20], [21]. This can be clearer
if we realize the implicit fact that rank(W ) ≥ 1, and we
only need to enforce the constraint rank(W ) ≤ 1. However,
rather than relying on any strong duality condition, we are
considering our approach as the penalty method [22], where
we just require η to be sufficiently large, but not necessarily
to be the dual variable. Moreover, it can be easily shown that
for a large enough η, the optimal solution of Problem (4) is
the same as that of Problem (2) under very mild conditions:
i) Problem (3) is bounded; ii) there exists a rank-one feasible
point and iii) η is sufficiently large. However, Problem (4) is
still hard to solve due to the fact that the rank function is non-
differentiable and discontinuous, which will be shown later.
Therefore, we propose to approximate the rank function by a
summation of parameterized concave functions and show that
the optimal solution of the approximate problem converges
to the optimal solution of Problem (4) as the approximation
parameter approaches zero [23], [24].

Note that for any W ∈ Sn, rank(W ) =
∑n
i=1 u(σi(W )),

where σi(W ) denotes the ith largest singular value of W
and u(x) denotes the unit step function for x ≥ 0 defined by
u(x) = 1 if x > 0 and u(x) = 0 if x = 0. u(x) is discontinu-
ous, non-differentiable, and thus difficult to minimize directly.
In order to handle this, we approximate it by a continuous and
differentiable function θ(x, ε), in which the parameter ε > 0 is
used to control the accuracy of this approximation. There are
many choices of the approximate function, among which we
choose θ(x, ε) = 1−e−x/ε, because it is not only differentiable
but also a lower bound of u(x) and lim

ε→0
θ(x, ε) = u(x). These

good properties facilitate the design of our solution framework.
In Fig. 1, it can be seen that when ε decreases, the exponential
function θ(x, ε) approaches the unit step function very well.
In Fig. 1, only the non-negative part of the unit step function
and its approximation are shown. This is because the singular
value of any matrix is non-negative, the definition of the matrix
rank is only related to the non-negative part of the unit step
function. Moreover, since θ(x, ε) = 1−e−x/ε can approximate
the unit step function very well when x is non-negative, we
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Fig. 1. Illustration of the approximated function of the unit step function. As
the approximation parameter ε approaches zero, θ(x, ε) gets close to u(x).

propose to use this function for the rank approximation. In
addition, there are other interesting candidates that are worthy
of attention. One candidate is 1 − 1/(x + 1). In fact, this
function has the same properties as θ(x, ε) = 1−e−x/ε [Prop.
2.1, [23]]. Therefore, our convergence result to be presented
also holds for this function. Another candidate is the (offset
and scaled) sigmoid function: 1/(1 + e−x). This function
also approximates the unit step function well. However, since
its gradient is more complicated to calculate compared to
θ(x, ε) = 1− e−x/ε, we prefer to use θ(x, ε) = 1− e−x/ε for
the rank approximation. Thus, we find that θ(x, ε) = 1−e−x/ε
has a twofold good property: i) the convergence of our method
derived from this approximate function is provable and ii) it
facilitates the calculation in the algorithm.

Then we define the approximation of the rank function asso-
ciated with parameter ε as: r̃ank(W , ε) =

∑n
i=1 θ(σi(W ), ε),

and we establish the approximate problem of Problem (4) as
follows:

minimize
W∈Sn

Tr(A0W ) + η · r̃ank(W , ε)

subject to W � 0, Tr(AiW ) ≤ bi, i = 1, . . . ,m.
(5)

Denote the optimal solution of Problem (5) given ε > 0 as
W̃

opt

ε . The relationship of the optimal solutions of Problem
(4) and its approximate problem, Problem (5), is established
in the following theorem.
Theorem 1. For any decreasing sequence εk → 0, if W̃

opt

εk
→

W̃ , W̃ is an optimal solution of Problem (4).
Proof: See Appendix B.

Theorem 1 shows that we can get the optimal solution
of Problem (4) by first solving Problem (5) with a fixed
parameter εk, whose initial value can be a large number. Then,
we gradually decrease εk to make the rank approximation
more accurate, and solve a sequence of Problem (5) for
different parameters εk. Finally, the solution will converge
to the optimal point of Problem (4). Though θ(x, ε) with
a small ε is closer to the unit step function, its concavity
is very large and may lead to computational difficulties in
numerical calculations. This is because large concavity means
that the slope of the curve decreases sharply as x increases and
there may be a large number of local minimum points for the
approximate problem. Thus, it is reasonable to solve Problem
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(5) with decreasing values of εk to gradually approach the
optimal solution of Problem (4).

Although Problem (5) is still nonconvex (i.e., minimization
of a concave objective), it is a continuous and differentiable
problem compared to Problem (4). In the following subsection,
we will focus on solving Problem (5) by leveraging the MM
technique. Note that it is hardly possible to achieve the optimal
solution of Problem (5) due to its non-convexity. Thus, our
target is to find a stationary point that is close to the optimal
solution. Moreover, the performance of our method will be
demonstrated by numerical results.

B. Majorization-minimization Method

The MM algorithm [25]–[27] (a.k.a. successive upper-
bound minimization) tries to minimize f(x) over x ∈ X ,
where X is a closed convex set. This problem is difficult when
the objective function f(x) is nonconvex. The idea of the MM
algorithm is to transform the original difficult problem into a
series of simple problems, which is a generalization of many
well known algorithms, such as the expectation maximization
algorithm (EM) and the difference of convex functions (DC)
algorithms [25]. In iteration k + 1, the algorithm minimizes
a surrogate function g(x, xk), in which xk is the solution
obtained from the kth iteration. This is to say that the following
step is carried out to update the solution:

xk+1 = argmin
x∈X

g(x, xk).

The MM algorithm solves the problem with surrogate objec-
tive functions iteratively until convergence. The difficulty of
the MM algorithm lies in the construction of the surrogate
functions, which is highly nontrivial and requires a careful
design to facilitate the computation of each iteration. More-
over, in order to guarantee the convergence of the algorithm,
the surrogate functions need to satisfy the following conditions
as shown in [25].

C1 : g(y, y) = f(y), ∀ y ∈ X ;
C2 : g(x, y) ≥ f(x), ∀ x, y ∈ X ;
C3 : g′(x, y; d)|x=y = f ′(y; d), ∀ d with y + d ∈ X ;
C4 : g(x, y) is continuous in (x, y).

C1 and C2 require that the surrogate function is a tight upper
bound of the original objective function. Define the directional
derivative by

f ′(x; d) = lim inf
λ→0

f(x+ λd)− f(x)
λ

.

Then C3 requires the same directional derivative of the original
and surrogate functions at the point x = y.

C. MM-based Rank-one Solution Method

In Problem (5), the feasible set is a closed convex set
and the objective function is composed of a convex func-
tion Tr(A0W ) and a nonconvex one η · r̃ank(W , ε). In
order to solve Problem (5) by leveraging the MM algo-
rithm, we continue to construct the surrogate function of
r̃ank(W , ε) satisfying conditions C1–C4. More importantly,

to ensure the computational efficiency after the substitution
of the surrogate function, we tend to design the surro-
gate function as a linear function of W so that the re-
sulting problem is an SDP problem in each iteration. De-
note r̃ank(W , ε) =

∑n
i=1 θ(σi(W ), ε) = h(σ(W )) where

σ(W ) = [σ1(W ), . . . , σn(W )]T , and the eigenvalue decom-
position (EVD) of W ∈ Sn+ is P diag(σ(W ))P T , in which
the ith column of P is the eigenvector of W . The choice of
the surrogate functions is based on the following proposition.
Proposition 1: r̃ank(W , ε) is concave and its gradient at W
is:

∂ r̃ank(W , ε)

∂W
= ∇r̃ank(W , ε) = P diag(β)P T , (6)

where β = ∇h(σ(W )) denotes the gradient of h at σ(W ).
Proof: The proof follows Propositions 2 and 3 in [24].

Note that for a PSD matrix, the eigenvalues are equal to the
singular values, which means σi(W ) is also the ith largest
eigenvalue of W ∈ Sn+. Proposition 1 shows the concavity
of the approximate rank function r̃ank(W , ε) and its gradient.
According to this, for some feasible matrix W k obtained at
the kth iteration, we have

r̃ank(W ,ε) ≤ r̃ank(W k,ε)+〈∇r̃ank(W k, ε),W−W k〉, (7)

where the gradient is given by the following equation:

∇r̃ank(W k, ε)=
1

ε
P diag(e−σ1(W k)/ε, · · · , e−σn(W k)/ε)P T ,

for θ(x, ε) = 1− e−x/ε. Consequently, we choose to use

g(W ,W k) = Tr(A0W ) + η · 〈∇r̃ank(W k, ε),W 〉

as the surrogate objective function for Problem (5) at a
specific point W k, where the constant term η(r̃ank(W k, ε)−
〈∇r̃ank(W k, ε),W k〉) from the right-hand side of (7) is
ignored because it will not affect the optimal solution.

As a result, if we denote the optimal solution obtained by
the MM algorithm at the kth iteration as W opt

k , at the k+1th
iteration, the following problem is solved in order to update
the solution:

minimize
W∈Sn

g(W ,W opt
k )

subject to W � 0, Tr(AiW ) ≤ bi, i = 1, . . . ,m.
(8)

Note that based on the surrogate function g(W ,W opt
k ), Prob-

lem (8) is an SDP problem and can be solved efficiently.
Next we will explain how to get an initial point for our

iterative algorithm. It is well known that the nuclear norm
||W ||∗ is a convex approximation of the rank function and
||W ||∗ = Tr(W ) for W ∈ Sn+. Thus, we solve the following
problem to initialize our algorithm and denote its optimal
solution as W opt

0 ,

minimize
W∈Sn

Tr(A0W ) + η · Tr(W )

subject to W � 0, Tr(AiW ) ≤ bi, i = 1, . . . ,m.
(9)

Finally, our solution framework is summarized in Algorithm
1. For a given rank penalty coefficient η, there are two layers
of loops in the algorithm. The inner-loop (Step 5 to Step
10) carries out the MM algorithm for a fixed approximation
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Algorithm 1 MM-based rank-one solution method for QCQPs
Input: η > 0, ε0 > 0, α > 1, δ1 > 0, δ2 > 0 are given

1: Solve Problem (9) to get W opt
0 ,

2: l = 0, ε = ε0, d1 = δ1 + 1,
3: while d1 > δ1 do
4: k = 0, W̃ 0 =W opt

l , d2 = δ2 + 1,
5: while d2 > δ2 do
6: Solve Problem (8) at point W̃ k to get the optimal
7: solution W̃ k+1,
8: d2 = ||W̃ k+1 − W̃ k||F

/
||W̃ k||F ,

9: k = k + 1,
10: end while
11: W opt

l+1 = W̃ k,
12: d1 = ||W opt

l+1 −W
opt
l ||F

/
||W opt

l ||F ,
13: l = l + 1, ε = ε/α.
14: end while
15: if rank(W opt

l ) > 1 then
16: η = 2η, and go back to Step 1.
17: end if
Output: W opt

l

parameter ε and the outer-loop (Step 3 to Step 14) decreases
ε at each iteration with a factor of α, in order to make
the approximate function gradually approach the exact rank
function. Based on our numerical tests, α can be chosen
within the range [2, 10]. After the outer loop terminates, the
algorithm checks the rank of the solution. If the rank is larger
than one, the penalty coefficient will be increased (here we
double it as an example) until a rank-one solution is output
by the algorithm. When the penalty coefficient is large enough,
this algorithm can guarantee to yield a rank-one solution
eventually.

The stopping criteria for the two loops are based on d1 and
d2, which are the relative distances of solutions obtained by
successive iterations in the outer and inner loops, respectively.
Moreover, δ1 and δ2 are two small numbers, which can be set
to be 10−3 as an example.

The convergence of Algorithm 1 is ensured by the following
theorem.
Theorem 2. The solution obtained by Algorithm 1 is a
stationary point of Problem (2).

Proof: See Appendix C.

IV. GLOBAL SEARCH BASED ON LOCAL SMOOTHING

With Algorithm 1, we are able to find a stationary point,
which is usually a local minimum point of Problem (2) if it is
not a saddle point. Therefore, Algorithm 1 can be considered
as a local search method for the SDP relaxation of QCQPs.
In order to further improve the result, our method can be
combined with any other global search algorithm. We propose
to use the local smoothing technique [28] in this section.

A. Local smoothing transformation and its approximation

Consider a general optimization problem as:

minimize
x∈Rn

f(x), subject to x ∈ X , (10)

where f(x) is nonconvex and has many local minimum
points. Suppose that there is a local search algorithm LS(x),
which is a mapping from Rn to Rn, such that y = LS(x)
is a local minimum point. Furthermore, if we denote the
composed function c(x) = f(LS(x)), the following problem
is equivalent to Problem (10):

minimize
x∈Rn

c(x), subject to x ∈ X . (11)

In fact, many global optimization techniques (such as Multi-
start and clustering method) reduce to the uniform random
sampling applied to c(x) [28]. Because the new objective
function c(x) is piecewise constant and hard to solve, a local
smoothing transformation is applied to c(x) such that the
information of descent directions can be captured.

Given a Gaussian smoothing kernel ψ(t) : R→ R, defined
as ψ(t) = exp(− t2

2ρ2 ) where the multiplicative constant is
ignored, the ψ-transform of c(x) on a local region B(x0, r) =
{x : ||x− x0|| ≤ r} is

cBψ (x) =

∫
B(x0,r)

c(z)ψ(||z − x||)dz∫
B(x0,r)

ψ(||z − x||)dz
. (12)

The effect of this smoothing transformation is similar to a
filter, which replaces the value of each point by the weighted
average of its neighbors and the degree of smoothing is
controlled by ρ. Leveraging the smooth function cBψ (x), the
information of the descent direction of the original piecewise
constant function can be obtained. Since the analytical expres-
sion of c(z) is not available, an estimation of (12) is calculated
based on K sample points z1, . . . ,zK , which are uniformly
drawn from B(x0, r):

ĉBψ (x) =

∑K
i=1 c(zi)ψ(||zi − x||)∑K

i=1 ψ(||zi − x||)
. (13)

Note that both the one-dimensional and high-dimensional
Gaussian kernel smoothing techniques have been widely used
for signal and image smoothing [28]–[30]. Moreover, a n-
dimensional Gaussian kernel smoothing can be done by apply-
ing one-dimensional smoothing n times in each direction [29].
Therefore, for the high-dimensional x, the Gaussian kernel
smoothing can still be applied to get a qualitative description
of very complex functions.

B. Global search algorithm

For Problem (5), we have found a local minimum point
xopt0 where xopt0 (xopt0 )T =W opt

l , which is the output of Al-
gorithm 1. In order to conduct a global exploration, a uniform
random sampling is carried out in the neighborhood region
of xopt0 : B(xopt0 , r), and the sampling points are denoted as
xi, i = 1, . . . ,K. Each point xi is considered as a starting
point and Algorithm 1 is applied to find a local minimum zi,
with the corresponding objective value denoted as c(zi). Then,
the estimated local smoothing function is constructed by Eq.
(13). Denote a local minimum of ĉBψ (x) as xopt1 , which is
considered as a new center and the procedure is repeated until
the maximum number of iterations J is reached. The global
search algorithm is summarized in Algorithm 2.
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Algorithm 2 Global search based on local smoothing
Input: r, J,K are given

1: Use Algorithm 1 to find a local minimum xopt0 where
xopt0 (xopt0 )T =W opt

l ;
2: j = 0;
3: while j < J do
4: i = 1
5: while i ≤ K do
6: Randomly sample a point xi in B(xoptj , r);
7: Take xi as a starting point and use Algorithm 1 to
8: find a local minimum zi; i = i+ 1;
9: end while

10: Use zi, i=1, . . . ,K to construct ĉBψ (x) based on (13);
11: For ĉBψ (x), find a local minimum xoptj+1; j = j + 1;
12: end while
Output: xoptJ

V. APPLICATION TO OPF PROBLEMS AND CASE STUDIES

A. Classical OPF Problem formulation and SDP relaxation

OPF is a generic term that describes a broad class of
problems in which we seek to optimize a specific objective
function (e.g., generation cost or power loss) while satisfying
network and operational constraints of power systems [31]. In
this section, we will first introduce the conventional and the
rank constrained formulations of OPF problems. Then, case
studies are carried out for power grid testbeds.

Consider a power network of n buses. We denote the set
of buses and the set of generator buses as N = {1, 2, . . . , n}
and G ⊆ N , respectively. Also, the set of transmission lines is
denoted as E ⊆ N ×N . The π-model is used for transmission
lines, in which the series impedance of the line (i, j) is zij
and yij = 1/zij . The shunt admittance at both ends of the line
(i, j) is denoted as 0.5ŷij and the total admittance-to-ground
at bus i is yii. We denote the admittance matrix of the network
as Y whose (i, j)th element is yii+

∑
k∈N (i) yik if i = j and

−yij otherwise. Then, the OPF problems can be formulated
as follows.

minimize
PG,QG,V

∑
i∈G

fi(PGi
)

s.t. PGi
−PDi

=Re(y∗ii|Vi|2) +
∑

j∈N (i)

Re{Vi(V ∗i −V ∗j )y∗ij},

∀i ∈ N , (14a)

QGi−QDi=Im(y∗ii|Vi|2) +
∑

j∈N (i)

Im{Vi(V ∗i −V ∗j )y∗ij},

∀i ∈ N , (14b)

PminGi
≤ PGi ≤ PmaxGi

, ∀i ∈ G, (14c)

QminGi
≤ QGi

≤ QmaxGi
, ∀i ∈ G, (14d)

V mini ≤ |Vi| ≤ V maxi , ∀i ∈ N , (14e)
|Sij | ≤ Smaxij , ∀(i, j) ∈ E , (14f)

where PGi + jQGi is the complex generation output at bus
i and it is zero for i ∈ N\G. PDi + jQDi is the load
at bus i. Also, Sij = Pij + jQij is the complex power
flow on line (i, j) and Vi is the complex voltage at bus i.
The vectors of {PGi

}i∈G , {QGi
}i∈G and {Vi}i∈N are denoted

by PG, QG and V , respectively. In addition, N (i) denotes
the set of all buses that are directly connected to bus i. In
Problem (14), the objective function is a summation of all
the generation cost. As for constraints, Eq. (14a) and Eq.
(14b) are power flow balance constraints. In addition, Eq.
(14c)–Eq.(14f) require that the active power, reactive power,
voltage magnitudes and apparent power flows are within the
corresponding operating limits, respectively.

It can be noted that Problem (14) is indeed a QCQP and it
can be reformulated as a rank constrained SDP problem [1]
by defining

Yi = eie
T
i Y , Yij = (0.5ŷij + yij)eie

T
i − (yij)eie

T
j ,

Y i =
1

2

[
Re{Yi + Y Ti } Im{Y Ti − Yi}
Im{Yi − Y Ti } Re{Yi + Y Ti }

]
,

Y i = −
1

2

[
Im{Yi + Y Ti } Re{Yi − Y Ti }
Re{Y Ti − Yi} Im{Yi + Y Ti }

]
,

Y ij =
1

2

[
Re{Yij + Y Tij } Im{Y Tij − Yij}
Im{Yij − Y Tij } Re{Yij + Y Tij }

]
,

Y ij = −
1

2

[
Im{Yij + Y Tij } Re{Yij − Y Tij }
Re{Y Tij − Yij} Im{Yij + Y Tij }

]
,

Mi =

[
eie

T
i 0

0 eie
T
i

]
,

X = [Re{V }T Im{V }T ]T , W =XXT .

With this, Problem (14) can be equivalently converted to:

minimize
PG,QG,W

∑
i∈G

fi(PGi
)

s.t. PGi
−PDi

=Tr(Y iW ), ∀i∈N , (15a)

QGi−QDi=Tr(Y iW ), ∀i∈N , (15b)

PminGi
≤ PGi

≤ PmaxGi
, ∀i ∈ G, (15c)

QminGi
≤ QGi ≤ QmaxGi

, ∀i ∈ G, (15d)

(V mini )2 ≤ Tr(MiW ) ≤ (V maxi )2, ∀i ∈ N , (15e)

|Tr(Y ijW )+jTr(Y ijW )|≤Smaxij , ∀(i, j) ∈ E , (15f)

W � 0, (15g)
rank(W ) = 1. (15h)

It can be easily shown that when each cost function fi(PGi) is
linear or quadratic in PGi

, Problem (15) can be transformed to
a standard SDP problem together with a rank-one constraint.
Therefore, our algorithm can be applied to solve the OPF
problems. In the following subsections, we will show the
simulation results of applying our method to the OPF problems
associated with different power system testbeds.

Since the general QCQPs are NP-hard (so are the OPF
problems [1]), it is difficult to show whether the rank-one
solution obtained by our method is globally optimal or not.
However, we can measure the sub-optimality by comparing
the objective value of the optimal solution obtained from
our method (denoted as f̂opt) with the lower bound (denoted
as LB) [13], which is obtained by solving the SDP relax-
ation problem (3), without the rank-one constraint. The sub-
optimality degree is calculated by ζ = f̂opt−LB

f̂opt
× 100%. In
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case f̂opt = LB, i.e., ζ = 0, it means that the solution is
globally optimal and the relaxation is exact. It has been shown
that for OPF problems, the SDP relaxation is exact if and only
if the duality gap is zero [1].

B. Zero duality gap cases

Nine power system testbeds are considered in this sub-
section. The first three are small systems with three or four
buses (Systems 1, 2, and 3 in [1]), for which the objective
function is the power loss. The detailed specifications and
constraints for these systems can be found in Tables I and
II in [1], respectively. Another two radial systems are also
considered. One is 32-bus [32] and another is 34-bus [33].
For both systems, the objective is to minimize the power loss
and there is no limit on the apparent power flow. In addition,
we have conducted simulations on IEEE systems with 14, 30,
57 and 118 buses, which are archived at [34] and the data
are extracted from the software toolbox MATPOWER [35].
In these IEEE systems, the objective functions are the total
generation costs, which are quadratic functions in the amount
of active power generation. The simulation results for these
nine systems are shown in the first nine rows in Table I, where
we denote the objective value obtained from MATPOWER as
fMP and the second largest eigenvalues of the final solutions
as SLE, respectively. For Algorithm 1, the parameters are set
as follows: δ1 = 10−4, δ2 = 10−4 and α = 2. As for the initial
value of η, it is set as 1, 1, 1, 1, 1, 20, 20, 20 and 320 for
the nine systems, respectively. Note that we set a large initial
η for some systems just for reducing the number of iterations
until a large enough η can be reached.

From Table I, it can be seen that for all these nine cases, our
method can always yield a rank-one solution (thus feasible),
and the performance of our method is as good as that of
MATPOWER. Additionally, all of them achieve the global
optimal solution except for the IEEE 118-bus system, where
the sub-optimality degree is extremely small. This small
sub-optimality degree for the IEEE 118-bus system is also
observed in [2]. Note that even when the duality gap is
zero, there may exist a large number of high rank infeasible
solutions [1], while our method can find the rank-one feasible
solution without suffering any optimality loss. Moreover, for
all these cases, we are able to find the global optimal point by
Algorithm 1 and thus, there is no need to apply Algorithm 2
here.

C. Non-zero duality gap cases

In the previous part, we have shown the practicability of our
method for power systems with zero duality gap. Although the
OPF problems for a significant number of practical systems
have been tested to have zero duality gap, the authors in [15]
explored a counterexample: the duality gap could be non-zero
in case of strict line-flow constraints. In this regard, additional
simulations are conducted.

Consider a three-bus system whose topology and load
demands are shown in Fig. 2. Each bus has active and reactive
power demands with the base of 100 MVA. Also, Buses 1
and 2 both have generators which can produce active and

Fig. 2. A three-bus system [15].

TABLE II
CASES WITH STRICT LINE-FLOW LIMITS.

Line-flow limits (MVA)
l12 l13 l23

Case 1 +∞ +∞ 50
Case 2 +∞ +∞ 45
Case 3 25 +∞ 50

reactive power, while a synchronous condenser which can
only produce reactive power is connected to Bus 3. It is
assumed that there is no power limit for all the condenser and
generators. For Buses 1 and 2, the generation cost is quadratic:
fi(PGi) = ci2P

2
Gi

+ ci1PGi + ci0, where the coefficients
ci2, ci1, and ci0 are $0.11 per (MWh)2, $5 per MWh and
$0, respectively for Bus 1 and $0.085 per (MWh)2, $1.2 per
MWh and $0, respectively for Bus 2. Bus 3 has no generation
cost and the allowable range for voltage magnitudes at all the
buses is [0.9, 1.1] in p.u. As for the parameters in p.u. in
the π-model of the transmission lines, z13 = 0.065 + j0.620,
z23 = 0.025 + j0.750, and z12 = 0.042 + j0.900 are the
series impedances. What’s more, ŷ13 = j0.450, ŷ23 = j0.700
and ŷ12 = j0.300 are the total shunt susceptances for each
line. Then, we will impose constraints on the line-flow limits.
According to the different apparent power flow limits on
both ends of the transmission lines, we have generated three
different cases denoted as Cases 1, 2 and 3 shown in Table
II, where the transmission line connecting Bus i and Bus j is
denoted as lij . In addition, we have conducted a simulation for
a larger system: the New England 39-bus [34] and compare
the performance of our algorithm with MATPOWER in Table
II. The parameter setting in Algorithm 2 is as follows: J = 10,
K = 1000 and r ∈ {0.1, 0.2, 0.3}.

The simulation results for these four cases are shown in
the last four rows of Table I. Furthermore, the changes of
the second largest eigenvalues (SLE) of the solutions with
increasing η are shown in Fig. 3. In Fig. 3, it can be seen
that with the increase of η, the second largest eigenvalues
decreases. Also, when η becomes large enough, the SLE is
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TABLE I
SIMULATION RESULTS OF OPF PROBLEMS.

LB f̂opt fMP ζ SLE rank η nε nη Run. time (sec)
System 1 [1] 0.2259 0.2259 0.2259 0 3.4E-10 1 1 6 1 5.4
System 2 [1] 0.1588 0.1588 0.1588 0 9.9E-10 1 1 7 1 4.4
System 3 [1] 0.3877 0.3877 0.3877 0 6.2E-10 1 1 7 1 5.0

32-bus system [32] 202.68 202.68 202.68 0 1.3E-9 1 1 9 1 226.8
34-bus system [33] 12.92 12.92 12.92 0 7.5E-9 1 1 9 1 228.5

IEEE-14 8081.53 8081.53 8081.53 0 4.5E-11 1 20 8 1 22.1
IEEE-30 576.89 576.89 576.89 0 2.8E-6 1 20 10 1 192.3
IEEE-57 41737.8 41737.8 41737.8 0 3.3E-5 1 20 10 1 3015
IEEE-118 129654.4 129660.7 129660.7 0.0046% 6.3E-7 1 320 11 1 436331

Case 1 5789.9 5812.6 5812.6 0.39% 1.4E-12 1 320 6 4 36.4
Case 2 5869.9 6038.3 6038.3 2.79% 7.5E-14 1 320 9 4 46.4
Case 3 5793.6 5831.4 5831.4 0.65% 8.4E-10 1 640 8 5 60.5

New England 39-bus 41862.1 41864.2 41864.2 0.005% 3.8E-7 1 320 10 4 1716
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Fig. 3. Second largest eigenvalues for different η.

very small such that the solutions are rank-one. From Table
I, we observe that the sub-optimality degrees are all very
small and more importantly, for all the cases, our method is
successful to find rank-one solutions which are as good as the
performance of MATPOWER. Note that compared with the
penalization method in [2], our method is more general and
there is no need to fine tune any specific parameter in contrast
to that in [2]. Therefore, we have shown that the performance
of our method is good for these non-zero duality gap cases.
In addition, for these four cases, we observe that the global
search algorithm yields the same result as that of Algorithm 1.
This means that for the cases we have tested, the solutions are
not further improved by Algorithm 2, which can be considered
as a support for the good performance of Algorithm 1.

Note that although SDP is convex, its computational com-
plexity is still high for large systems. Therefore, the largest
systems considered in our experiments are the IEEE 118-
bus system and the New England 39-bus system for zero and
non-zero duality gap cases, respectively. If larger systems are
considered, a distributed algorithm for solving the large scale
SDP problems should be studied such as in [36].

D. Computation information

The problems in the case studies are solved by the CVX
solver on a single machine with an i5 dual-core processor. The
computation information are shown for the OPF problems in
the last three columns of Table I. Specifically, we show the

total running time for the rank-one solutions to be obtained as
well as two numbers of iterations: i) the number of iterations
for increasing η, which is denoted as nη and ii) the number
of iterations for decreasing ε with a fixed η, which is denoted
as nε. From the table, it can be seen that the running time
varies from several seconds to tens of thousands of seconds.
While for the interior point solver in MATPOWER, it takes
less than one second for all of these cases. Therefore, we admit
that before any distributed algorithm is designed for our rank-
constrained SDP algorithm, the computational complexity is
higher than the interior point solver in MATPOWER.

We have to emphasize that although in this section we have
shown the different cases of applying our method to OPF
problems, we never state that our method is superior to any
state-of-the-art OPF solvers. In contrast, we want to underline
the generality of our solution framework. That is, whenever a
problem is formulated as a QCQP, our method can be readily
applied to get a practically meaningful solution, which has
a great chance to be at least locally optimal. As a result,
the solution obtained by our method can be regarded as a
good starting point for more sophisticated algorithms which
can explore the specific structures of different problems.

E. Other update rules for the penalty parameter

In Algorithm 1, the penalty parameter η is doubled at each
iteration and from Table I, it can be seen that the "large
enough" values of η for Cases 1, 2 and 3 are equal to 320, 320
and 640, respectively. In comparison, we have tried another
update rule that is linear. Specifically, the initial values of
η are also equal to 20, but at each step, we increase η by
a constant step size of 20. After the rank-one solutions are
obtained, we find that the η values are equal to 220, 240 and
380, respectively for the three cases. It can be seen that the
linear update rule has found smaller η values. This is normal
because the doubling update rule is more aggressive to find the
large η. However, an important finding is that both rules can
obtain the rank-one solution with the same objective value.
Therefore, we can know that as long as the penalty parameter
is large enough, the solution is not very sensitive to the value
of η. According to this, the doubling update rule can be a good
way to get a rank-one solution with less iterations.

We have shown the successful application of our method
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to the OPF problems. In the next section, we will show the
application of our method to the state estimation problems.

VI. APPLICATION TO STATE ESTIMATION PROBLEMS AND
CASE STUDIES

First, we will briefly introduce how our method can be
used to solve the state estimation problem and then show the
numerical results on the IEEE 14-bus system.

The goal of state estimation (SE) problems is to compute
the complex bus voltages from a set of redundant measure-
ments such as the active power injection, reactive power flow
and voltage magnitude, etc [37], [38]. To formulate the SE
problem, we follow the same notation in the example of OPF
problems. Consider a power network with n buses. Denote the
complex voltage at bus i as Vi and the vector of {Vi}i=1,··· ,n
as V . A subset of the following system variables are measured:

1) The active and reactive power injections at bus i: P inji

and Qinji ;
2) The active and reactive power flows at both ends of line

(i, j): Pij , Pji, Qij and Qji;
3) The voltage magnitude at bus i: |Vi|.

Suppose that there are M number of measurements denoted
as κ = (κ1, κ2, · · · , κM , ). Then, the m-th entry of κ can be
modeled as [39]:

κm = hm(V ) + εm, (16)

where hm denotes the quadratic dependence of κm(·) on V .
Each εm is assumed to be an independent Gaussian random
variable with zero mean: i.e., εm ∼ N(0, ν2m), where νm
denotes the corresponding standard deviation. Then, the SE
problem aims to find an estimate V̂ of V that best matches
the measurement set κ according to the relationships in (16).
The general formulation for SE problem is as follows:

min
V

J(V ) =

(
M∑
m=1

∣∣∣κm − hm(V )

νm

∣∣∣p)1/p

, (17)

where the different choices of p can result in different estima-
tion criteria. For example, in this paper we choose p = 2 and
this is the Weighted Least Square (WLS) estimation:

min
V

J(V ) =
M∑
m=1

1

ν2m

(
κm − hm(V )

)2
. (18)

From the OPF example, we know that hm(V ) is a quadratic
function of V and by defining X , W , Y i, Y i, Y ij , Y ij

and Mi as in the OPF problem, all the measurements can be
modeled by a linear relationship with the matrix variable W :

κm = Tr(HmW ) + εm,

where Hm denotes the corresponding measurement matrix
for each κm. Therefore, the SE problem can be converted to
a problem with W as the decision variable:

min
W

J(W ) =
M∑
m=1

1

ν2m

(
κm − Tr(HmW )

)2
subject to W � 0, rank(W ) = 1.

(19)

Based on the Schur’s complement lemma [39], this problem
can be further converted to a standard SDP form with a rank-
one constraint:

min
W ,τ

µT τ

s.t.
[

τm κm−Tr(HmW )
κm−Tr(HmW ) 1

]
�0,m=1, ...,M

rank(W ) = 1.
(20)

where µ = [1/ν21 , · · · , 1/ν2M ]T and τ = [τ1, · · · , τM ]T .
Therefore, our algorithm can be applied to solve SE problems.
Next, we will show the simulation results for the SE problem
on the IEEE 14-bus system.

The measurements available are listed in Table III. The
data of these measurements are generated in the following
way. First, the OPF problem of this system is solved by
MATPOWER (or our proposed method) to get the true values
of these variables without noise. Then, based on the variance
ν2m for each measurement, we add some randomly sampled
Gaussian noise to the true values to get the vector κ. We
have generated 10 different samples of the vector κ to see the
performance of our method and the results are shown in Table
IV. From the table, we can see that for each measurement
data, our method is able to find the rank-one solutions with
very small sub-optimality degrees. Therefore, we have shown
the performance of applying our general solution framework
to different QCQP problems in power systems and find that
it can always obtain rank-one solutions.

VII. CONCLUSIONS

This paper has proposed a solution framework for the
QCQPs in power systems. Different from existing works
that apply SDP relaxation to QCQPs, our proposed method
has been guaranteed to obtain a rank-one feasible solution.
Moreover, it has been shown that our proposed algorithm can
converge to a stationary point with a small gap of optimality. In
addition, a global search algorithm based on local smoothing
technique has been introduced to further improve the quality
of solutions. In the case studies, we have successfully applied
our method to OPF problems and SE problems, in which our
proposed solution framework has achieved good performance
based on the extensive numerical results and find that rank-one
solutions can always be obtained.

TABLE III
SE MEASUREMENTS OF IEEE 14-BUS SYSTEM.

Bus index of measurements νm
P inji 1,2,3,4,5 0.015
Qinji 1,2 0.015
|Vi| 2,3,6,8,10,14 0.01

Line index of measurements

Pij
(1,2),(2,3),(4,7),(4,9),(5,6),(6,13),(7,9),(9,10),

(9,14),(12,13),(4,2),(5,2),(5,4),(11,6) 0.02

Qij
(1,2),(2,3),(4,7),(4,9),(5,6),(6,13),(7,9),

(12,13),(4,2),(5,2),(5,4),(11,6) 0.02
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TABLE IV
SE RESULTS OF IEEE 14-BUS SYSTEM.

Sample index 1 2 3 4 5
LB 15.30 3.34 17.12 5.22 10.50
f̂opt 15.42 3.38 17.73 5.42 11.01
ζ 0.75% 1.11% 3.46% 3.52% 4.65%

SLE 1.9E-9 1.1E-8 6.3E-9 4.1E-9 6.6E-10
η 640 640 640 640 640

Sample index 6 7 8 9 10
LB 15.54 5.50 5.67 1.46 1.71
f̂opt 16.46 5.85 6.11 1.57 1.86
ζ 5.59% 6.20% 7.23% 7.5% 7.69%

SLE 6.4E-9 3.1E-9 2.8E-9 4.6E-9 2.9E-9
η 640 640 640 640 640

APPENDIX A
INHOMOGENEOUS QCQPS

The standard form of general inhomogeneous QCQPs is:

minimize
x∈Rn

xTA0x+ 2aT0 x

subject to xTAix+ 2aTi x ≤ bi, i = 1, . . . ,m.
(21)

According to [12], Problem (21) can be homogenized as:

minimize
x∈Rn,t∈R

[xT t]

[
A0 a0

aT0 0

] [
x
t

]

subject to [xT t]

[
Ai ai
aTi 0

] [
x
t

]
≤ bi, i = 1, . . . ,m,

t2 = 1.

Therefore, the SDP relaxation technique is applicable to gen-
eral inhomogeneous QCQPs by homogenization.

APPENDIX B
PROOF OF THEOREM 1

The proof of this theorem is mainly from the Proposition
2.4 (c) in [23] and here we briefly introduce the key steps.
First, it can be easily shown that the approximate function
θ(x, ε) = 1−e−x/ε satisfies θ(x, ε) ≤ u(x) and lim

ε→0
θ(x, ε) =

u(x), ∀x ≥ 0. Therefore, we have r̃ank(W , ε) ≤ rank(W )
and lim

ε→0
r̃ank(W , ε) = rank(W ) since r̃ank(W , ε) =∑n

i=1 θ(σi(W ), ε) ≤
∑n
i=1 u(σi(W )) = rank(W ). Then let

W opt be an optimal solution of Problem (4), then, for each
k, it holds that

Tr(A0W
opt) + η · rank(W opt)

≥ Tr(A0W
opt) + η · r̃ank(W opt, εk)

≥ Tr(A0W̃
opt

εk
) + η · r̃ank(W̃

opt

εk
, εk)

k→∞−→ Tr(A0W̃ ) + η · rank(W̃ )

≥ Tr(A0W
opt) + η · rank(W opt),

where the last inequality comes from the feasibility of W̃ and
the optimality of W opt, so we get the result.

APPENDIX C
PROOF OF THEOREM 2

Our algorithm is based on the MM technique and in this
technique, the limit point of the iterates has been shown to
be a stationary point when the surrogate functions satisfy
conditions C1–C4 [25]. In Problem (5), the original objective
is Tr(A0W ) + η · r̃ank(W , ε), where the first part is convex
while the second part is concave based on Proposition 1.
Then from Eq. (7), we use the first order derivative of the
concave part to construct the surrogate function Tr(A0W ) +
η ·
(
r̃ank(W k, ε) + 〈∇r̃ank(W k, ε),W − W k〉

)
for some

feasible point W k. According to this, it can be easily verified
that the surrogate functions satisfy conditions C1–C4, which
guarantees that a stationary point of Problem (5) can be found
by Algorithm 1. Based on Theorem 1 and that the rank of
the solution is one, this solution is also a stationary point of
Problem (2), which is our original problem. Consequently, we
can get the result in Theorem 2
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