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ABSTRACT
There is an increasing need for spatial and temporal schedule tai-

lored to the requests and preferences of electric vehicles (EVs) in a

network of charging stations. From the perspective of a charging

network operator, this paper considers an online decision-making

problem that recommends charging stations and the corresponding

energy prices to sequential EV arrivals, and schedules the charging

allocation to maximize the expected total revenue. To address the

uncertainties from future EV arrivals and EVs’ choices with respec-

tive to recommendations, we propose an Online Recommendation

and Charging schedule algorithm (ORC) that is parameterized by

a value function for customized designs. Under the competitive

analysis framework, we provide a sufficient condition on the value

function that can guarantee ORC to be online competitive. More-

over, we design a customized value function based on the sufficient

conditions in an asymptotic case, and then rigorously prove the

competitive ratio of ORC in the general case. Through extensive

experiments, we show that ORC achieves significant increase of

revenues compared to benchmark online algorithms.

CCS CONCEPTS
• Theory of computation → Online algorithms; • Networks
→ Network economics.
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1 INTRODUCTION
Mobility and energy management of a population of electric ve-

hicles (EVs) have drawn great attention from both industry and
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academy with the increasing penetration of EVs in both public

(e.g., EV buses/taxis) and private transportation [10, 13, 20, 25]. For

a charging network operator (CNO) who manages multiple pub-

licly accessible charging stations, two types of decisions need to

be made upon the arrival of each EV: (i). A spatial schedule that
decides which station the EV should be assigned/recommended to

and (ii). A temporal schedule that determines when the EV should be

charged at the station decided by the spatial schedule. The follow-

ing three practical issues arise for a CNO to solve this sequential

decision-making problem.

• Uncertainty, it is challenging to predict the charging de-

mand (such as energy to be delivered and its deadline) of

each EV since it varies with time, location, and the state of

each individual EV (e.g., state-of-charge and battery capac-

ity) [1, 19, 24]. A CNO needs to design an online algorithm
that makes spatial and temporal schedules without knowing

the information of future arrivals.

• Discretion, unlike managing an EV fleet owned by a private

operator, a CNO cannot assign the EVs to charging stations

by mandatory orders [10, 13]. One promising solution is

to strategically devise a charging offer, which contains a

recommended charging station and a corresponding energy

price, for each EV to choose by itself. EVs can choose to

accept this offer, or reject it and leave for alternative charging

facilities.

• Commitment, the charging demand is time-varying and

geographically unbalanced. As a result, the states of charg-

ing stations (e.g., number of idle chargers) at the time when

a CNO recommends stations may differ from when an EV ar-

rives at the station for charging. Consequently, the demands

of EVs may not be satisfied. To guarantee the quality of ser-

vice, when making spatial schedules, a CNO needs to make

on-arrival commitment [1], by reserving enough charging

capacity for future temporal schedules.

In consideration of the three issues above, the key challenge of

designing and analyzing an online algorithm lies in making deci-

sions with two types of uncertainties. Type I uncertainty includes

the charging demands and contextual information (e.g., location,

time, EV brand, etc.) of all future EVs. Type II uncertainty is the

randomness that EVs may or may not accept the recommendations

provided by a CNO. Note that EVs may choose to reject all recom-

mendations and no revenues can be achieved by both online and

offline algorithms. Therefore, instead of focusing on the worst-case

scenario for both Type I and II uncertainties, it is desirable to have a

less conservative online algorithm that maximizes the expected to-

tal revenue averaging over all Type II realizations in the worse-case

realization of Type I uncertainty.

144

https://doi.org/10.1145/3396851.3397727
https://doi.org/10.1145/3396851.3397727
https://doi.org/10.1145/3396851.3397727


e-Energy’20, June 22–26, 2020, Virtual Event, Australia B. Sun, T. Li, S.H. Low, and D.H.K. Tsang

Contributions. In this paper, based on a recommender system

formed by a CNO and a network of charging stations, we design

an Online algorithm that decides Recommendations and Charging
schedules with on-arrival commitment (ORC) for sequential EV
arrivals. In more detail, an EV initiates a charging session inquiry,

which includes its energy demand and charging deadline, to a CNO

through an online platform. Upon receiving the inquiry, an ORC
offers that EV a station-price pair, which indicates the energy price

if the EV charges at this station. This offer can also be set as an

empty entry if no charging station is available. The EV then decides

whether to accept it or not. If the recommendation is accepted, the

EV will arrive at the recommended station and pay for the charging

service with the fixed price in the offer. If the EV rejects the offer,

it can either leave for alternative charging facilities, or adjust its

charging demand (by reducing its energy demand or extending its

departure time) and submit a new inquiry, which may be offered a

more satisfactory recommendation. For each accepted offer, anORC
manages to schedule charging that satisfies the EV’s demand, i.e.,

to deliver the required energy by the deadline at the recommended

charging station. The objective of an ORC is to maximize the total

revenue collected from all EVs.

Value functions (see Definition 3.1) that evaluate the marginal

cost for charging an EV at a given charging station are used to

parameterize the ORC. As our next result, in Theorem 4.2, we

provide a sufficient condition on value functions for ensuring that

the ORC has a constant (expected) competitive ratio. Furthermore,

based on the sufficient condition, we propose a systematic way for

generating an explicit value function with a provable competitive

ratio summarized in Theorem 4.4.

To demonstrate the effectiveness of the ORC, we provide a case-
study based on geographical data in Hong Kong in Section 6. The

(empirical) competitive ratios in our experiments outperform other

three online benchmarks.

Related work. A rich literature on online management of EVs

has emerged in recent years and the work can be broadly divided

into two branches. In the sequel, we overview a collection of the

representative results.

Temporal scheduling of EVs. The key idea in temporal scheduling

of EVs is treating the EVs as deferrable loads and schedule the

charging based on their demands. Along the lines of this idea,

previous work has been focusing on coordinating the charging

process of a fleet of EVs by temporal load shifting (i.e., temporal

schedules) to mitigate their negative impacts on power systems [6,

7] or gain profits [19, 21]. Online algorithms have been considered

in [1–3, 9, 9, 19, 23], which aim to achieve a bounded competitive

ratio. Some recent work [15, 17, 24] developed auction-based or

posted price mechanisms to handle the EVs’ choices but the main

focus there is temporal scheduling for a single charging station.

The authors of [1] reported an impossibility result that there is no

competitive online algorithm for on-arrival commitment charging

schedule in the general setting. However, this paper will show

that our proposed online algorithm ORC can achieve a bounded

competitive ratio if more information (e.g., the set of possible prices

and the choice probabilities of EVs) is given for decision-making.

Spatial scheduling of EVs. More recent studies [4, 20, 25] indicate

that it is also of great importance to recognize EVs as mobile loads,

which can be scheduled to be served at different locations (i.e.,

spatial schedules) to balance the location-dependent EV charging

demands. The literature on the spatial scheduling of EVs mainly

considers evaluating the system-level benefits of the spatial sched-

uling. For example, the authors of [4] designed a pricing strategy for

routing EVs to charging stations that optimizes the charging loads

of different nodes in a transmission network and simultaneously

mitigates the congestion of a transportation network. The authors

of [25] used a game-theoretic approach to devise a spatial-temporal

scheduling formultiple groups of public EVs competing for capacity-

limited charging stations. Further investigations on pricing mecha-

nisms for private EVs that charge at public EV charging stations can

be found in [13]. Although geographical information is considered,

most existing works on spatial scheduling model EV arrivals as a

stationary distribution that is known a priori. In contrast to this, re-

alistic EV arrival patterns depend on times and locations and are in

general hard to forecast [1, 19, 24]. Designing an online algorithm

for spatial scheduling with sequential EV arrivals is therefore still

an open and challenging task. There is a theory-to-application gap

between existing online algorithms mainly designed for temporal

scheduling and practical situations wherein EVs are spatial loads

and have their own freedom to make decisions. The main goal of

this paper is to close this gap by proposing an online competitive

algorithm for joint spatial and temporal scheduling.

2 PROBLEM STATEMENT
This section first presents the online spatial-temporal scheduling

problem that an ORC solves. Next, we formally define the expected

competitive ratio, as an offline benchmark and then an auxiliary

optimization is given whose optimal value bounds the expected

competitive ratio from above, based on which the ORC is designed

and analyzed.

2.1 Online spatial-temporal scheduling
The CNO manages a set M := {1, . . . , 𝑀} of geographically dis-

tributed charging stations. Each charging station𝑚 ∈ M is equipped

with 𝑏𝑚 chargers, each of which can be used for on/off charging

control with a fixed charging rate 𝑅𝑚 . Due to varying electricity

prices, each station𝑚 ∈ M is allowed to set their energy prices

for charging sessions from a set of price levels R𝑚 := {𝑟𝑚,𝑗 }𝑗 ∈J𝑚 ,

where J𝑚
:= {1, . . . , 𝐽𝑚} is the index set of price levels. Without

loss of generality, the price levels are sorted in an ascending order,

i.e., 0 < 𝑟𝑚,1 < · · · < 𝑟𝑚,𝐽𝑚
.

A set N := {1, . . . , 𝑁 } of EVs sequentially submit charging ses-

sions to the CNO. Consider a time-slotted system
1
indexed by

𝑡 ∈ T := {1, . . . ,𝑇 } with a fixed slot length Δ𝑇 . Let 𝑎𝑛 , 𝑒𝑛 , and 𝑑𝑛
denote the submission time, energy demand, and deadline of charg-

ing session 𝑛, respectively. To model EVs’ preferences for stations

and prices, we define the following matrix of probabilies.

Choice probabilities. Based on the charging requests and con-

textual information, we assume each EV has a fixed choice proba-
bility over the recommended station-price pairs. The choice prob-

ability of EV 𝑛 is denoted by 𝒑𝑛 := {𝑝𝑚,𝑗
𝑛 }𝑚∈M, 𝑗 ∈J𝑚 where 𝑝

𝑚,𝑗
𝑛

indicates the preference of an EV 𝑛 for charging at station𝑚 with

1
Charging sessions can be submitted and processed in real time but the charging

schedule has to be done over discrete time steps.
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the price 𝑟𝑚,𝑗
. It must satisfy that (i) 0 ≤ 𝑝

𝑚,𝑗
𝑛 ≤ 1, and (ii) it is mono-

tonically non-increasing with respect to price, i.e., 𝑝
𝑚,𝑗
𝑛 ≤ 𝑝

𝑚,𝑗 ′
𝑛 for

all 𝑗 ′ < 𝑗 and𝑚 ∈ M.

Upon the submission of an EV 𝑛 ∈ N , the CNO has access to the

following information:

• Charging requirements of an EV 𝑛 in different charging

stations {𝑒𝑛,𝑚,T𝑛,𝑚}𝑚∈M , where 𝑒𝑛,𝑚 = ⌈𝑒𝑛/(𝑅𝑚Δ𝑇 )⌉ is

the required number of time slots to charge EV 𝑛 at station

𝑚 and T𝑛,𝑚 := {𝑎𝑛 + 𝑡𝑛,𝑚, . . . , 𝑑𝑛} is the set of feasible time

slots for charging EV 𝑛 at station𝑚, where 𝑡𝑛,𝑚 denotes the

estimated traveling time for EV 𝑛 to reach station𝑚.

• The matrix of probabilities 𝒑𝑛 .

The CNO then performs spatial scheduling (i.e, deciding a station-

price recommendation) based on the above information and tempo-

ral scheduling (i.e, allocating charging time slots) for each charging

session. In the following, we introduce more decision variables that

the CNO can optimize over to maximize its revenue.

Recommendation decisions. The recommendation variable
𝑦
𝑚,𝑗
𝑛 ∈ {0, 1} is one if a station-price pair (𝑚, 𝑗) is recommended

to an EV 𝑛 and zero otherwise. No recommendation will be made

if 𝑦
𝑚,𝑗
𝑛 = 0 for all𝑚 ∈ M and 𝑗 ∈ J𝑚

. For the simplicity of pre-

sentation and analysis, we assume each EV 𝑛 only received one

recommendation and our proposed scheme can be easily extended

to the cases when multiple recommendations are given to each EV.

Charging decisions. Another binary variable 𝑥
𝑚,𝑗
𝑛,𝑡 ∈ {0, 1} is

the charging variable that determines whether to charge an EV 𝑛 at

station𝑚 ∈ M at time 𝑡 ∈ T𝑛,𝑚 . Again, for the ease of presentation,

we restrict the charging levels to be two-states–on and off.

Maximization objective. Given a recommended station-price

pair (𝑚, 𝑗), if an EV 𝑛 accepts this offer, it pays 𝑒𝑛𝑟
𝑚,𝑗

to the CNO

and drives to station𝑚 for charging. The CNO guarantees to deliver

𝑒𝑛 energy to this EV before its deadline𝑑𝑛 at station𝑚. The objective

of the CNO is to maximize the total revenue collected from all EVs.

After receiving the recommendation pair, the EV 𝑛 accepts it

with probability 𝑝
𝑚,𝑗
𝑛 .

Remark 2.1. When choice probabilities are all ones, the spatial

decision of the online problem reduces to an assignment problem

as EVs will accept any recommendation for sure.

Remark 2.2. (An example of estimating choice probabilities) We

can model the preference of EV 𝑛 over station-price pair (𝑚, 𝑗) as
𝑓𝑛 (𝑚, 𝑗 ;𝜸𝑛) = 𝛾𝑛 (1) + 𝛾𝑛 (2)/𝑡𝑛,𝑚 + 𝛾𝑛 (3)/(𝑟𝑚,𝑗 )2,

which is inversely proportional to the driving time to station𝑚 and

the energy price 𝑟𝑚,𝑗
. 𝜸𝑛 = [𝛾𝑛 (1), 𝛾𝑛 (2), 𝛾𝑛 (3)] customizes the

preference of each EV 𝑛 and can be estimated from historical data

by regression. The choice probability of EV 𝑛 for the station-price

pair (𝑚, 𝑗) can be estimated by a softmax function:

𝑝
𝑚,𝑗
𝑛 =

exp

(
𝑓𝑛 (𝑚, 𝑗 ;𝜸𝑛)

)∑
𝑚∈M

∑
𝑗 ∈J𝑚 exp

(
𝑓𝑛 (𝑚, 𝑗 ;𝜸𝑛)

) . (1)

An instance of the online spatial-temporal schedule problem

contains three types of information:

• Setup information S := {M, {𝑏𝑚}𝑚∈M , {R𝑚}𝑚∈M };

• Arrival information I := {𝜽𝑛}𝑛∈N , where the arrival infor-

mation of EV 𝑛 is 𝜽𝑛 = {{𝑒𝑛,𝑚,T𝑛,𝑚}𝑚∈M ,𝒑𝑛};

• Choice information W := {𝒘𝑛}𝑛∈N , where the choice in-

formation of EV 𝑛 is 𝒘𝑛 := {𝑤𝑚,𝑗
𝑛 }𝑚∈M, 𝑗 ∈J𝑚 , in which

𝑤
𝑚,𝑗
𝑛 ∈ {0, 1} is EV 𝑛’s choice on the recommendation (𝑚, 𝑗)

where𝑤
𝑚,𝑗
𝑛 is a realization of the Bernoulli random variable

𝑊
𝑚,𝑗
𝑛 with success probability 𝑝

𝑚,𝑗
𝑛 .

The setup information S is fixed and known by the CNO a priori

while the arrival information and choice information are revealed

sequentially, and especially, the choice information depends on pre-

vious decisions. Given a setup S, the goal in this paper is to design

an online algorithm operated by the CNO that generates station-

price recommendations for each EV 𝑛 and schedules charging based

on the arrival information 𝜽 1, . . . , 𝜽𝑛 and the choice information

𝒘1, . . . ,𝒘𝑛−1. We encode the information available at an online

CNO for providing a recommendation for an EV 𝑛 by

F𝑛 := {S, 𝜽 1, . . . , 𝜽𝑛,𝒘1, . . . ,𝒘𝑛−1}. (2)

Let ALG(I;W) denote the revenue collected from an online al-

gorithm for an arrival instance I. ALG(I;W) is a random vari-

able with respective to W, the random choices from EVs . The

goal of the online algorithm is to maximize the expected revenue

EW [ALG(I,W)].
Next we define an offline benchmark for the online algorithm.

Let O𝑛 = F𝑛 ∪ {𝜽𝑛+1, . . . , 𝜽𝑁 } denote the offline information for

decision-making of EV 𝑛 given the entire arrival information I.
In this offline benchmark, even though the choice probabilities of

all future EVs are known a priori, the realizations of future EVs’

choices, including the current one, are unknown for the offline

benchmark. Therefore, the optimal offline algorithm is an adaptive

algorithm and the optimal solution is a policy mapping the offline

information O𝑛 to decisions. Let 𝑌
𝑚,𝑗
𝑛 (O𝑛) and 𝑋𝑚,𝑗

𝑛,𝑡 (O𝑛) denote
the recommendation and charging variables based onO𝑛 .𝑌

𝑚,𝑗
𝑛 (O𝑛)

and 𝑋
𝑚,𝑗
𝑛,𝑡 (O𝑛) are the outputs of a causal decision maker 𝜋 whose

decisions can only be made based on O𝑛 . The CNO can collect a

revenue 𝑒𝑛𝑟
𝑚,𝑗

from EV 𝑛 only if the station-price pair (𝑚, 𝑗) is
offered to EV 𝑛 (i.e., 𝑌

𝑚,𝑗
𝑛 (O𝑛) = 1) and meanwhile the EV accepts

this offer (i.e.,𝑊
𝑚,𝑗
𝑛 = 1). The total revenue is

RVN(𝜋,I;W) :=

𝑁∑
𝑛=1

𝑀∑
𝑚=1

𝐽𝑚∑
𝑗=1

(𝑒𝑛𝑟𝑚,𝑗 ) · 𝑌𝑚,𝑗
𝑛 (O𝑛) ·𝑊𝑚,𝑗

𝑛 ,

subject to ∑
𝑡 ∈T𝑛,𝑚

𝑋
𝑚,𝑗
𝑛,𝑡 (O𝑛) ≥ 𝑒𝑛,𝑚𝑌

𝑚,𝑗
𝑛 (O𝑛), ∀𝑛,𝑚, 𝑗, (3a)

𝑁∑
𝑛=1

𝐽𝑚∑
𝑗=1

𝑊
𝑚,𝑗
𝑛 · 𝑋𝑚,𝑗

𝑛,𝑡 (O𝑛) ≤ 𝑏𝑚, ∀𝑚, 𝑡, (3b)

𝑀∑
𝑚=1

𝐽𝑚∑
𝑗=1

𝑌
𝑚,𝑗
𝑛 (O𝑛) ≤ 1, ∀𝑛, (3c)

𝑌
𝑚,𝑗
𝑛 (O𝑛) ∈ {0, 1}, ∀𝑛,𝑚, 𝑗, (3d)

𝑋
𝑚,𝑗
𝑛,𝑡 (O𝑛) ∈ {0, 1}, ∀𝑛,𝑚, 𝑗, 𝑡 ∈ T𝑛,𝑚, (3e)

where constraint (3a) is the energy constraint that ensures a charg-

ing allocation is scheduled to deliver 𝑒𝑛 amount of energy at station

𝑚 if EV 𝑛 is offered to charge at station𝑚. Constraint (3b) is the
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capacity constraint ensuring the total number of EVs that are si-

multaneously charging at a station cannot exceed the total number

of chargers. Constraint (3c) restricts that at most one station-price

pair is offered to each EV. We consider the best causal decision

maker 𝜋∗ defined by

𝜋∗ = arg max

𝜋
EW [RVN(𝜋,I;W)] . (4)

With 𝜋∗ being used, the optimal revenue for eachW isOPT(I;W)
and the expectation EW [OPT(I;W)] is maximized.

Due to lacking future arrival information, any online algorithm

cannot achieve an expected offline revenue EW [OPT(I;W)]. In
this paper, we aim to design an online algorithm that can achieve

at least a fraction of the offline revenue 𝛼EW [OPT(I;W)], where
0 ≤ 𝛼 ≤ 1 is a constant and defined as the competitive ratio of the

online algorithm. Formally, the competitive ratio is defined as

𝛼 = min

all possible I

EW [ALG(I;W)]
EW [OPT(I;W)] . (5)

The goal is to design an online algorithm that achieves a compet-

itive ratio as large as possible. Note that 𝛼 is defined as the ratio

of the expected revenues of the online and offline algorithms over

EVs’ random choices in the worse-case realization of EVs’ arrival

instances. Different from the conventional competitive analysis that

defines the ratio in the worse scenario regarding all uncertainties,

our expected competitive ratio is necessary in this problem since

EVs may reject all recommendations such that both online and of-

fline algorithms achieve zero revenue, leading to meaningless ratios

defined for cases that rarely occur. Before proceeding to our design,

for the purpose of competitive analysis, we first introduce an auxil-

iary optimization, whose optimal value bounds EW [OPT(I;W)]
from above.

2.2 Auxiliary optimization
The randomness from EVs’ choices makes it hard to find the optimal

decision maker 𝜋∗ and compute EW [OPT(I;W)]. Thus, given
the setup S and arrival information I, we construct an auxiliary

optimization which is a deterministic offline optimization that can

be used later in our analysis.

OPT(I) = max

𝒙,𝒚

𝑁∑
𝑛=1

𝑀∑
𝑚=1

𝐽𝑚∑
𝑗=1

(𝑒𝑛𝑟𝑚,𝑗 ) · 𝑝𝑚,𝑗
𝑛 · 𝑦𝑚,𝑗

𝑛 , (6a)

s.t.
∑

𝑡 ∈T𝑛,𝑚
𝑥
𝑚,𝑗
𝑛,𝑡 ≥ 𝑒𝑛,𝑚𝑦

𝑚,𝑗
𝑛 , ∀𝑛,𝑚, 𝑗, (6b)

𝑁∑
𝑛=1

𝐽𝑚∑
𝑗=1

𝑝
𝑚,𝑗
𝑛 𝑥

𝑚,𝑗
𝑛,𝑡 ≤ 𝑏𝑚, ∀𝑚, 𝑡, (6c)

𝑀∑
𝑚=1

𝐽𝑚∑
𝑗=1

𝑦
𝑚,𝑗
𝑛 ≤ 1, ∀𝑛, (6d)

𝑦
𝑚,𝑗
𝑛 ≥ 0, ∀𝑛,𝑚, 𝑗, (6e)

0 ≤ 𝑥
𝑚,𝑗
𝑛,𝑡 ≤ 1, ∀𝑛,𝑚, 𝑗, 𝑡 ∈ T𝑛,𝑚 . (6f)

Lemma 2.3. Given a setupS and an arrival instanceI, the optimal
objective OPT(I) of the auxiliary optimization (6) is an upper bound
of the optimal expected revenue EW [OPT(I;W)].

In this auxiliary optimization, all constraints are satisfied in

expectation instead of being respected for every sample path in the

original problem (3). Thus, this auxiliary problem can be considered

as a relaxation of the original problem and hence builds an upper

bound. The formal proof of Lemma 2.3 is presented in Appendix A.

3 ORC: AN ONLINE RECOMMENDATION
AND CHARGING SCHEDULE ALGORITHM

In this section, we propose an online algorithm, ORC, that decides
the recommendation and charging schedule for each EV 𝑛 based on

the casual information F𝑛 . We first introduce a bid-price control

policy that is the basis of ORC and then present ORC in detail.

3.1 Basic idea: a bid-price control policy
In the online spatial-temporal schedule problem, a myopic algo-

rithm will recommend the station-price pair that can maximize the

instantaneous expected revenue, i.e.,

max

𝑚∈M, 𝑗 ∈J𝑚
𝑝
𝑚,𝑗
𝑛 (𝑟𝑚,𝑗𝑒𝑛) . (7)

However, the myopic algorithm may not give the desired compet-

itive ratio since it, on the one hand, fails to balance the charging

sessions across different stations. As a result, some popular charg-

ing stations may get occupied quickly and some future charging

sessions that only accept to charge at those stations cannot be

served. On the other hand, the myopic algorithm underestimates

the EV arrivals in the future (actually assuming no future arrivals).

Thus, each station may be occupied by some charging sessions that

have arrived earlier but pay less. To deal with these two issues, an

online algorithm needs to provide recommendations to balance the

charging sessions in different stations and reserve some charging

capacity for future arrivals.

Bid-price control is a popular heuristic method in revenue man-

agement literature for balancing the inventory of different resources

[8, 16] and reserving resources for future usages [12]. The basic

idea of bid-price control is to set a threshold (or bid) price for using

one unit of each resource. A product is sold only when the offered

price by the customer is larger than the sum of threshold prices of

the resources that compose this product. The bid-price control is

intuitive and easy for implementation. However, its performance

highly depends on the threshold prices and there are no general

guidelines for designing those prices.

Our proposed ORC adopts the bid-price control policy for mak-

ing recommendation decisions. In particular, we can consider the

number of idle chargers in one time slot at one station as a resource.

A charging session can then be considered as a product that needs

to consume a bundle of resources to fulfill energy demand. Thus,

the core of ORC is to design threshold prices for activating one

charger in each time slot at each station based on the casual infor-

mation F𝑛 to estimate the marginal charging cost of each charging

session at each charging station.

3.2 Algorithm description
A modified bid-price control policy is used for generating the rec-

ommendations to vehicles, which gives the online recommendation

algorithm shown in Algorithm 1.
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Algorithm 1 The proposed ORC(𝜙)
Inputs: Sequential setup information S and value functions

𝜙 = {𝜙𝑚}𝑚∈M .

Initialization: 𝑣𝑚
0,𝑡

= 0,∀𝑡 ∈ T ,𝑚 ∈ M.

while a new charging session 𝑛 arrives do
Observe arrival information 𝜽𝑛 = {{𝑒𝑛,𝑚,T𝑛,𝑚}𝑚∈M ,𝒑𝑛};
for each station𝑚 ∈ M do

Calculate the candidate charging schedule 𝒖𝑚𝑛 ;

Set the marginal cost 𝜁𝑚𝑛 ;

end for
Determine the candidate station-price pair (𝑚∗

𝑛, 𝑗
∗
𝑛);

if 𝑝𝑚
∗
𝑛, 𝑗

∗
𝑛

𝑛 (𝑟𝑚∗
𝑛, 𝑗

∗
𝑛 − 𝜁

𝑚∗
𝑛

𝑛 )𝑒𝑛 ≤ 0 then
Offer no recommendations;

else
Recommend (𝑚∗

𝑛, 𝑗
∗
𝑛) to EV 𝑛;

Observe the realization of EV 𝑛’s choice;

if EV 𝑛 accepts the recommendation then
Recompute charging schedule;
for 𝑡 ∈ T𝑛,𝑚∗

𝑛
do

Charge EV 𝑛 by 𝑥
𝑚∗

𝑛, 𝑗
∗
𝑛

𝑛,𝑡 = 𝑢
𝑚∗

𝑛

𝑛,𝑡 ;

end for
Collect revenue 𝑟𝑚

∗
𝑛, 𝑗

∗
𝑛𝑒𝑛 from EV 𝑛;

for𝑚 ∈ M, 𝑡 ∈ T , do
Update 𝑣𝑚𝑛,𝑡 = 𝑣𝑚

𝑛−1,𝑡
+ ∑

𝑗 ∈J𝑚 𝑥
𝑚,𝑗
𝑛,𝑡 ;

end for
else

for𝑚 ∈ M, 𝑡 ∈ T , do
Update 𝑣𝑚𝑛,𝑡 = 𝑣𝑚

𝑛−1,𝑡
;

end for
end if

end if
end while

A. Choose a value function. To estimate the marginal cost of a

charging session at a particular station, we need to estimate the cost

of activating one charger each time at this station. This motivates

the following definition of a value function. Denote by 𝑤 ∈ [0, 1]
the utilization level that is defined as the ratio of the chargers being
used (divided by the total number of chargers).

Definition 3.1 (Value function). A value function𝜙𝑚 (𝑤) : [0, 1] →
[0, 𝑟𝑚,𝐽𝑚 ] is a monotonically non-decreasing function that evalu-

ates the cost of activating one additional charger at charger utiliza-

tion level𝑤 for station𝑚. Denote 𝜙 := {𝜙𝑚}𝑚∈M .

B. Calculate candidate charging schedule.
The value function defined above can be used for scheduling EV

charging. Let 𝒖𝑚𝑛 := {𝑢𝑚𝑛,𝑡 }𝑡 ∈T𝑛,𝑚 (where 𝑢𝑚𝑛,𝑡 ∈ {0, 1}) denote the
candidate charging schedule if EV 𝑛 charges at station𝑚 (i.e., when

station𝑚 is recommended to EV 𝑛 and the EV accepts this offer).

We determine 𝒖𝑚𝑛 by solving the cost minimization problem:

min

𝒖𝑚𝑛

∑
𝑡 ∈T𝑛,𝑚

𝑢𝑚𝑛,𝑡𝜙𝑚

(
𝑣𝑚
𝑛−1,𝑡

𝑏𝑚

)
, (8a)

s.t.

∑
𝑡 ∈T𝑛,𝑚

𝑢𝑚𝑛,𝑡 ≥ 𝑒𝑛,𝑚, (8b)

𝑢𝑚𝑛,𝑡 ∈ {0, 1}, 𝑡 ∈ T𝑛,𝑚, (8c)

where 𝑣𝑚
𝑛−1,𝑡

=
∑𝑛−1

𝑘=1

∑
𝑗 ∈J𝑚 𝑥

𝑚,𝑗

𝑘,𝑡
is the total number of occupied

chargers at time 𝑡 by the previous𝑛−1 EVs at station𝑚. Based on the

value function, 𝜙𝑚 (𝑣𝑚
𝑛−1,𝑡

/𝑏𝑚) is the estimated cost of activating

one charger of station𝑚 at time 𝑡 . The dual variable with respect to

constraint (8b), 𝜁𝑚𝑛 , can be regarded as the marginal cost of charging

session 𝑛 at station𝑚.

C. Set marginal cost.
Let 𝒖̄𝑚𝑛 denote the optimal solution of the problem (8). The mar-

ginal cost 𝜁𝑚𝑛 of serving the charging session 𝑛 at station𝑚 is

𝜁𝑚𝑛 := max

𝑡 ∈T𝑛,𝑚 :𝑢𝑚𝑛,𝑡=1

𝜙𝑚

(
𝑣𝑚
𝑛−1,𝑡

𝑏𝑚

)
. (9)

D. Determine candidate station-price pair.
The threshold price 𝜁𝑚𝑛 gives (𝑟𝑚,𝑗 − 𝜁𝑚𝑛 )𝑒𝑛 , the pseudo-revenue

of serving EV 𝑛 at station𝑚, based on which the CNO determines

the recommendation for EV 𝑛 by solving

(𝑚∗
𝑛, 𝑗

∗
𝑛) = arg max

𝑚∈M, 𝑗 ∈J𝑚

𝑝
𝑚,𝑗
𝑛 (𝑟𝑚,𝑗 − 𝜁𝑚𝑛 )𝑒𝑛 . (10)

Using 𝜁𝑚𝑛 , we can solve the problem (10) and obtain its optimal

solution (𝑚∗
𝑛, 𝑗

∗
𝑛). If the maximum pseudo-revenue is non-positive,

i.e., 𝑟𝑚
∗
𝑛, 𝑗

∗
𝑛 − 𝜁

𝑚∗
𝑛

𝑛 ≤ 0, the CNO offers no recommendation. This

bid-price control can achieve our goals of balancing the charging

sessions across the stations and reserving the charging capacity

for each station. In particularly, given a station𝑚, if the pseudo-

revenue is negative for a price level 𝑗 , the CNO makes no revenue

of recommending (𝑚, 𝑗) to EV 𝑛 anymore and the charging capacity

at station𝑚 will be reserved for future EVs that can accept higher

prices. Moreover, according to the expected pseudo-revenue of dif-

ferent stations when serving the same EV, the station with relative

less charging sessions is more possibly offered. To sum up, we can

set the recommendation variable 𝑦
𝑚,𝑗
𝑛 by

𝑦
𝑚,𝑗
𝑛 =

{
1 if𝑚 =𝑚∗

𝑛, 𝑗 = 𝑗∗𝑛, 𝑟
𝑚∗

𝑛, 𝑗
∗
𝑛 − 𝜁𝑚

∗
𝑛 > 0,

0 otherwise.
(11)

E. Recompute charging schedule.
The last step is to compute charging schedules 𝑥

𝑚,𝑗
𝑛,𝑡 , once the

user accepts the recommendation:

𝑥
𝑚,𝑗
𝑛,𝑡 = 𝑦

𝑚,𝑗
𝑛 · 𝑢𝑚𝑛,𝑡 , ∀𝑚, 𝑗, 𝑡 ∈ T𝑛,𝑚 . (12)

Note that when the charging resources have been used up by the

previous 𝑛 − 1 EVs at station 𝑚 at time 𝑡 , we have 𝑣𝑚
𝑛−1,𝑡

= 𝑏𝑚 .

If the optimal solution of problem (8) is 𝑢𝑚𝑛,𝑡 = 1, the marginal

cost is 𝜁𝑚𝑛 = 𝜙𝑚 (1) = 𝑟𝑚,𝐽𝑚
. Based on the recommendation pol-

icy (11), the algorithm will make no recommendations to EV 𝑛,

which automatically guarantees the feasibility of the solutions.

148



e-Energy’20, June 22–26, 2020, Virtual Event, Australia B. Sun, T. Li, S.H. Low, and D.H.K. Tsang

4 MAIN RESULTS
In this section, we present our main results. The first result is a

general statement on sufficient conditions for guaranteeing the

competitiveness of our proposed online algorithm ORC. We then

design a specific value function for ORC based on this sufficient

condition and derive its competitive ratio.

4.1 Sufficient conditions for 𝛼-competitiveness
Before proceeding to our first main theorem, we specify our value

function (see Definition 3.1) as a class of functions created by con-

catenating a sequence of functions over the domain [0, 1]. Divide
the domain [0, 1] into 𝐽𝑚 segments [0, ℓ𝑚,1), . . ., [ℓ𝑚,𝐽𝑚−1, 1] with
0 < ℓ𝑚,1 < · · · < ℓ𝑚,𝐽𝑚−1 < 1. Formally, we define the following:

Definition 4.1 (Piece-wise value function). A piece-wise value
function 𝜙𝑚 is a value function whose value in each segment ranges

between two consecutive prices, i.e.,

𝜙𝑚 (𝑤) ∈ [𝑟𝑚,𝑗−1, 𝑟𝑚,𝑗 ), for all𝑤 ∈ [ℓ𝑚,𝑗−1, ℓ𝑚,𝑗 ) .

Based on Definition 4.1, the theorem below provides sufficient

conditions as a system of ordinary differential equations (ODEs)

for ensuring the online algorithm being 𝛼-competitive.

Theorem 4.2. Given a setup S, for any 0 < 𝛼 ≤ 1, the online
algorithm ORC(𝜙) is 𝛼-competitive if the following conditions hold:

(i) There exists a non-decreasing piece-wise value function 𝜙𝑚 for
all𝑚 ∈ M, which satisfies the following ODEs for all 𝑗 ∈ J𝑚 :{

𝜉𝑚𝜙 ′
𝑚 (𝑤) − 𝜙𝑚 (𝑤) + 𝑟𝑚,𝑗 ≤ 𝑟𝑚,𝑗

𝛼 ,𝑤 ∈ (ℓ𝑚,𝑗−1, ℓ𝑚,𝑗 ),
𝜙𝑚 (ℓ𝑚,𝑗−1) = 𝑟𝑚,𝑗−1, 𝜙𝑚 (ℓ𝑚,𝑗 ) = 𝑟𝑚,𝑗 ,

(13)

where 𝜉𝑚 := (𝑏𝑚 + 1)/𝑏𝑚 .
(ii) The segment points {ℓ𝑚,𝑗 }𝑗 ∈J𝑚 take discrete values, i.e., ℓ𝑚,𝑗 ∈

{1/𝑏𝑚, 2/𝑏𝑚, . . . , 1}, for all 𝑗 ∈ J𝑚

Theorem 4.2 indicates that if we are able to find a value function

𝜙 that satisfies both (i) and (ii), the competitive ratio of ORC(𝜙) is
𝛼 . The detailed proof of Theorem 4.2 is deferred to Section 5.1. This

sufficient condition is built based on an online primal-dual analysis

[5]. Some recent works [11, 18, 22] have also reported similar results

that construct a set of ODEs as sufficient conditions for designing

online algorithms. Those works derive the ODEs by assuming the

capacity to be infinitely-large for taking the limit. However, in this

paper, we derive the ODE (13) based on Lagrange’s mean value

theorem directly without such an assumption. The discrete value

constraints are also due to the condition of applying the mean value

theorem. Thus, our result is more general and our proof approach

may be also useful for existing works to derive sufficient conditions

without assuming infinitely-large capacity.

4.2 Value function design
Our next main result gives an explicit construction of a value

function satisfying the conditions in Theorem 4.2 asymptotically

(𝑏𝑚 → ∞ for all𝑚 ∈ M). In addition, we analyze its corresponding

competitive ratio, presented in the following theorem.

Lemma 4.3. [Asymptotic value function] Given a setupS, as𝑏𝑚 →
∞ for all𝑚 ∈ M, the online algorithm ORC(𝜙) is 𝛼𝜙 -competitive if

for all𝑚 ∈ M, the value function on the segment [ℓ̂𝑚,𝑗−1, ℓ̂𝑚,𝑗 ) is

𝜙𝑚 (𝑤) = 𝑒𝑤 − 𝑒 ℓ̂
𝑚,𝑗−1

𝑒 ℓ̂
𝑚,𝑗 − 𝑒 ℓ̂

𝑚,𝑗−1

(𝑟𝑚,𝑗 − 𝑟𝑚,𝑗−1) + 𝑟𝑚,𝑗−1, (14)

where segment points {ℓ̂𝑚,𝑗 }𝑗 ∈J𝑚 are the solutions of the equations1 − 𝑒−ℓ
𝑚,1

= 1−𝑒−(ℓ𝑚,2−ℓ𝑚,1 )

1−𝑟𝑚,1/𝑟𝑚,2 = · · · = 1−𝑒−(ℓ𝑚,𝐽𝑚 −ℓ𝑚,𝐽𝑚−1 )

1−𝑟𝑚,𝐽𝑚−1/𝑟𝑚,𝐽𝑚
,

ℓ𝑚,𝐽𝑚 = 1,

and the competitive ratio is 𝛼𝜙 ≡ min𝑚∈M 1 − 𝑒−ℓ̂
𝑚,1

.

As 𝑏𝑚 → ∞, it follows that 𝜉𝑚 → 1 and the segment points in

the sufficient condition take continuous values. This enables us to

derive the value function and its corresponding competitive ratio

by binding the inequality in the ODEs (13) and solving it for each

segment. The detailed derivation is shown in Section 5.2.1. Based

on the asymptotic value function 𝜙 , our next Theorem shows that

if we round the asymptotic value function, parameterized by 𝛼𝜙 , a

bounded competitive ratio can be guaranteed.

Theorem 4.4. Given a setup S, the online algorithm ORC( ˜𝜙) is
𝛼

˜𝜙
-competitive if for all𝑚 ∈ M, when 𝑞 ∈ {0, 1/𝑏𝑚, 2/𝑏𝑚, . . . , 1},

the value function is, for all 𝑗 ∈ J𝑚 ,

˜𝜙𝑚 (𝑞) =

𝜙𝑚 (ℓ̂𝑚,𝑗 ) = 𝑟𝑚,𝑗 𝑞 =

⌈ℓ̂𝑚,𝑗𝑏𝑚 ⌉
𝑏𝑚

,

𝜙𝑚 (𝑞) ⌈ℓ̂𝑚,𝑗−1𝑏𝑚 ⌉
𝑏𝑚

< 𝑞 <
⌈ℓ̂𝑚,𝑗𝑏𝑚 ⌉

𝑏𝑚
,

(15)

where 𝜙𝑚 is the asymptotic value function defined in (14), and the

competitive ratio is 𝛼
˜𝜙
≡ min𝑚∈M

1−𝑒−ℓ̂𝑚,1

(𝑏𝑚+1) (1−𝑒−2/𝑏𝑚 ) .

The value function
˜𝜙 is a discrete function, which only takes

values at discrete points 𝑞 ∈ {0, 1/𝑏𝑚, 2/𝑏𝑚, . . . , 1}. ˜𝜙 (𝑞) takes the
same value as the asymptotic value function 𝜙 (𝑞) except when a

segment point of 𝜙 lies in (𝑞 − 1/𝑏𝑚, 𝑞). In that case,
˜𝜙 (𝑞) is set as

the price corresponding to the segment point. Since the charger

utilization level only takes discrete values from the same set,
˜𝜙 can

be applied to ORC. Although ˜𝜙 does not satisfy the ODEs in (13),

we are still able to prove that ORC( ˜𝜙) achieves the competitive

ratio 𝛼
˜𝜙
. Note that (𝑏𝑚 + 1) (1 − 𝑒−2/𝑏𝑚 ) is strictly larger than

1 and goes to 2 as 𝑏𝑚 → ∞, the derived competitive ratio for

finite segments goes to 𝛼
˜𝜙
= 𝛼𝜙/2 when 𝑏𝑚 goes to infinity. The

recovered competitive ratio is smaller than the one proved for the

asymptotic case in Theorem 4.3. Despite of this, our results provide

a rigorous competitive ratio analysis in case for finite segments.

As a comparison, most of the existing work such as [11, 18, 22]

only provides results for the asymptotic case. The detailed proof of

Theorem 4.4 is presented in Section 5.2.2.

5 COMPETITIVE ANALYSIS
5.1 Proof of Theorem 4.2
Our proof is based on the online primal-dual framework [5]. Its basic

idea is to construct a feasible solution to the dual of the upper bound

problem (6) based on the decisionsmade by the online algorithm. Let

Dual(I) denote the objective value of the dual problem evaluated

at the constructed feasible point. Based on weak duality, we have

Dual(I) ≥ OPT(I) ≥ EW [OPT(I;W)] . (16)
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Note that Dual(I) can be regarded as a function of the decisions

made by the online algorithms. Thus, if we can show that under the

conditions provided in Theorem 4.2, the expected revenue achieved

by ORC(𝜙) is bounded by a fraction of the dual objective, i.e.,

EW [ALG(I;W)] ≥ 𝛼Dual(I), (17)

the online algorithm is 𝛼-competitive. Therefore, to prove Theorem

4.2, we will prove two lemmas that show (16) and (17) hold.

The dual of the upper bound problem (6) is

min

𝝀,𝝁,𝜼,𝜷

𝑀∑
𝑚=1

𝑇∑
𝑡=1

𝜇𝑚𝑡 𝑏𝑚 +
𝑁∑
𝑛=1

𝜂𝑛 +
𝑁∑
𝑛=1

𝑀∑
𝑚=1

𝐽𝑚∑
𝑗=1

∑
𝑡 ∈T𝑛,𝑚

𝛽
𝑚,𝑗
𝑛,𝑡 (18a)

s.t. 𝜂𝑛 ≥ 𝑝
𝑚,𝑗
𝑛 (𝑟𝑚,𝑗 − 𝜆

𝑚,𝑗
𝑛 )𝑒𝑛,∀𝑛,𝑚, 𝑗, (18b)

𝛽
𝑗,𝑡
𝑛,𝑚 ≥ 𝑝

𝑚,𝑗
𝑛 (𝜆𝑚,𝑗

𝑛 − 𝜇𝑚𝑡 ), ∀𝑛,𝑚, 𝑗, 𝑡, (18c)

𝝀, 𝝁,𝜼, 𝜷 ≥ 0, (18d)

where dual variables 𝝀, 𝝁,𝜼 correspond to constraints (6b), (6c), and

(6d), respectively, and 𝜷 is associated with the constraints 𝑥
𝑚,𝑗
𝑛,𝑡 ≤ 1.

Let 𝑌
𝑚,𝑗
𝑛 := 𝑌

𝑚,𝑗
𝑛 (F𝑛) and 𝑋

𝑚,𝑗
𝑛,𝑡 := 𝑋

𝑚,𝑗
𝑛,𝑡 (F𝑛) denote the deci-

sions made by the ORC based on casual information F𝑛 . They are

random variables with respective to the random choices of the

previous 𝑛 − 1 customers.

Definition 5.1 (Random dual variables). We construct random

dual variables by the decisions 𝑌
𝑚,𝑗
𝑛 and 𝑋

𝑚,𝑗
𝑛,𝑡 ,

𝑀𝑚
𝑡 = 𝜙𝑚 (𝑉𝑚

𝑁,𝑡/𝑏𝑚), ∀𝑚, 𝑡, (19)

Λ
𝑚,𝑗
𝑛 = max

𝑡 ∈T𝑛,𝑚
𝜙𝑚

(
𝑉𝑚
𝑛−1,𝑡 /𝑏𝑚

)
𝑋
𝑚,𝑗
𝑛,𝑡 , ∀𝑛,𝑚, 𝑗, (20)

𝐻𝑛 =

𝑀∑
𝑚=1

𝐽𝑚∑
𝑗=1

𝑊
𝑚,𝑗
𝑛 𝑌

𝑚,𝑗
𝑛 (𝑟𝑚,𝑗 − Λ

𝑚,𝑗
𝑛 )𝑒𝑛, ∀𝑛, (21)

𝐵
𝑚,𝑗
𝑛,𝑡 =𝑊

𝑚,𝑗
𝑛 𝑋

𝑚,𝑗
𝑛,𝑡

[
Λ
𝑚,𝑗
𝑛 − 𝜙𝑚

(
𝑉𝑚
𝑛−1,𝑡 /𝑏𝑚

)]
,∀𝑛,𝑚, 𝑗, 𝑡, (22)

where𝑉𝑚
𝑛−1,𝑡

:= 𝑉𝑚
𝑛−1,𝑡

(F𝑛) is the total occupied number of chargers

of station𝑚 at time 𝑡 after processing the (𝑛 − 1)-th EV.

Lemma 5.2. The expected values of the random dual variables

𝜇𝑚𝑡 = E[𝑀𝑚
𝑡 ], ¯𝜆

𝑚,𝑗
𝑛 = E[Λ𝑚,𝑗

𝑛 ], 𝜂𝑛 = E[𝐻𝑛], ¯𝛽
𝑚,𝑗
𝑛,𝑡 = E[𝐵𝑚,𝑗

𝑛,𝑡 ],
are a feasible solution to the dual problem (18).

Lemma 5.2 is proved in Appendix B. Let Dual(I) denote the

dual objective evaluated at the feasible solution 𝜇𝑚𝑡 ,
¯𝜆
𝑚,𝑗
𝑛 , 𝜂𝑛 , and

¯𝛽
𝑚,𝑗
𝑛,𝑡 , we have Dual(I) ≥ OPT(I) (i.e., Equation (16)) based on the

weak duality. We next show Equation (17) holds in Lemma 5.3.

Lemma 5.3. If the value function 𝜙 satisfies sufficient conditions
in Theorem 4.2, we have EW [ALG(I;W)] ≥ 𝛼Dual(I).

Proof. The expected revenue of the online algorithm is

EW [ALG(I;W)] = E


𝑁∑
𝑛=1

𝑀∑
𝑚=1

𝐽𝑚∑
𝑗=1

𝑌
𝑚,𝑗
𝑛 𝑊

𝑚,𝑗
𝑛 𝑒𝑛𝑟

𝑚,𝑗

 ,
=

𝑁∑
𝑛=1

EF𝑛


𝑀∑

𝑚=1

𝐽𝑚∑
𝑗=1

𝑌
𝑚,𝑗
𝑛 𝑝

𝑚,𝑗
𝑛 𝑒𝑛𝑟

𝑚,𝑗

 :=

𝑁∑
𝑛=1

EF𝑛 [Δ𝑃𝑛] ,

where Δ𝑃𝑛 is the conditional expected revenue of the 𝑛-th EV.

The feasible dual objective value Dual(I) is

E


𝑀∑

𝑚=1

𝑇∑
𝑡=1

𝜙𝑚

(
𝑉𝑚
𝑁,𝑡

𝑏𝑚

)
𝑏𝑚 +

𝑁∑
𝑛=1

𝐻𝑛 +
𝑁∑
𝑛=1

𝑀∑
𝑚=1

𝐽𝑚∑
𝑗=1

∑
𝑡 ∈T𝑛,𝑚

𝐵
𝑚,𝑗
𝑛,𝑡

 .
The first part in the dual objective is

E

[
𝑀∑

𝑚=1

𝑇∑
𝑡=1

𝜙𝑚

(
𝑉𝑚
𝑁,𝑡

𝑏𝑚

)
𝑏𝑚

]
(𝑖)
=

𝑀∑
𝑚=1

𝑇∑
𝑡=1

𝑁∑
𝑛=1

E

[
𝜙𝑚

(
𝑉𝑚
𝑛,𝑡

𝑏𝑚

)
− 𝜙𝑚

(
𝑉𝑚
𝑛−1,𝑡

𝑏𝑚

)]
𝑏𝑚,

=

𝑁∑
𝑛=1

𝑀∑
𝑚=1

𝑇∑
𝑡=1

E

𝜙𝑚 ©­«
𝑉𝑚
𝑛−1,𝑡

+ 𝑋
𝑚,𝑗
𝑛,𝑡 𝑊

𝑚,𝑗
𝑛

𝑏𝑚

ª®¬ − 𝜙𝑚

(
𝑉𝑚
𝑛−1,𝑡

𝑏𝑚

) 𝑏𝑚,

=

𝑁∑
𝑛=1

𝑀∑
𝑚=1

𝑇∑
𝑡=1

𝑝
𝑚,𝑗
𝑛 EF𝑛

𝜙𝑚 ©­«
𝑉𝑚
𝑛−1,𝑡

+ 𝑋
𝑚,𝑗
𝑛,𝑡

𝑏𝑚

ª®¬ − 𝜙𝑚

(
𝑉𝑚
𝑛−1,𝑡

𝑏𝑚

) 𝑏𝑚 .

The equality (i) holds since 𝜙𝑚 (𝑉𝑚
0,𝑡
/𝑏𝑚) = 𝜙𝑚 (0) = 0 and the last

equality follows by applying tower property. Combining with the

conditional expectations E[𝐻𝑛 |F𝑛] and E[𝐵𝑚,𝑗
𝑛,𝑡 |F𝑛] in Equations

(26) and (27), the dual objective can be denoted by

Dual(I) :=

𝑁∑
𝑛=1

EF𝑛 [Δ𝐷𝑛] ,

=

𝑁∑
𝑛=1

EF𝑛


𝑀∑

𝑚=1

𝑇∑
𝑡=1

𝑝
𝑚,𝑗
𝑛

𝜙𝑚 ©­«
𝑉𝑚
𝑛−1,𝑡

+ 𝑋
𝑚,𝑗
𝑛,𝑡

𝑏𝑚

ª®¬ − 𝜙𝑚

(
𝑉𝑚
𝑛−1,𝑡

𝑏𝑚

) 𝑏𝑚
+

𝑀∑
𝑚=1

𝐽𝑚∑
𝑗=1

𝑌
𝑚,𝑗
𝑛 𝑝

𝑚,𝑗
𝑛 (𝑟𝑚,𝑗 − Λ

𝑚,𝑗
𝑛 )𝑒𝑛

+
𝑀∑

𝑚=1

𝐽𝑚∑
𝑗=1

∑
𝑡 ∈T𝑛,𝑚

𝑋
𝑚,𝑗
𝑛,𝑡 𝑝

𝑚,𝑗
𝑛

[
Λ
𝑚,𝑗
𝑛 − 𝜙𝑚

(
𝑉𝑚
𝑛−1,𝑡

𝑏𝑚

)] ,

where Δ𝐷𝑛 is defined as the conditional expected dual increment

by processing the 𝑛-th EV. We next prove EW [ALG(I;W)] ≥
𝛼Dual(I) by showing that Δ𝑃𝑛 ≥ 𝛼Δ𝐷𝑛,∀𝑛 ∈ N . Note that when

no recommendation is offered, i.e.,

∑𝑀
𝑚=1

∑𝐽𝑚

𝑗=1
𝑌
𝑚,𝑗
𝑛 = 0, 𝑌

𝑚,𝑗
𝑛 and

𝑋
𝑚,𝑗
𝑛,𝑡 are all zeros and Δ𝑃𝑛 = Δ𝐷𝑛 = 0. Therefore, we only need

to consider the case that a station-price pair (𝑚∗
𝑛, 𝑗

∗
𝑛) is recom-

mended, i.e., 𝑌
𝑚∗

𝑛, 𝑗
∗
𝑛

𝑛 = 1. Let T ∗
𝑛 denote the set of time slots in
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which 𝑋
𝑚∗

𝑛, 𝑗
∗
𝑛

𝑛,𝑡 = 1. We then have

Δ𝐷𝑛

𝑝
𝑚∗

𝑛, 𝑗
∗
𝑛

𝑛

=
∑
𝑡 ∈T∗

𝑛

𝜙𝑚∗
𝑛

©­«
𝑉
𝑚∗

𝑛

𝑛−1,𝑡
+ 1

𝑏𝑚∗
𝑛

ª®¬ − 𝜙𝑚∗
𝑛

©­«
𝑉
𝑚∗

𝑛

𝑛−1,𝑡

𝑏𝑚∗
𝑛

ª®¬
 𝑏𝑚∗

𝑛
+

(𝑟𝑚
∗
𝑛, 𝑗

∗
𝑛 − Λ

𝑚∗
𝑛, 𝑗

∗
𝑛

𝑛 )𝑒𝑛 +
∑
𝑡 ∈T∗

𝑛

Λ𝑚
∗
𝑛, 𝑗

∗
𝑛

𝑛 − 𝜙𝑚∗
𝑛

©­«
𝑉
𝑚∗

𝑛

𝑛−1,𝑡

𝑏𝑚∗
𝑛

ª®¬
 ,

(𝑖𝑖)
=

∑
𝑡 ∈T∗

𝑛

𝜙𝑚∗
𝑛

©­«
𝑉
𝑚∗

𝑛

𝑛−1,𝑡
+ 1

𝑏𝑚∗
𝑛

ª®¬ − 𝜙𝑚∗
𝑛

©­«
𝑉
𝑚∗

𝑛

𝑛−1,𝑡

𝑏𝑚∗
𝑛

ª®¬
 (𝑏𝑚∗

𝑛
+ 1)

+ 𝑟𝑚
∗
𝑛, 𝑗

∗
𝑛 · 𝑒𝑛 −

∑
𝑡 ∈T∗

𝑛

𝜙𝑚∗
𝑛

©­«
𝑉
𝑚∗

𝑛

𝑛−1,𝑡
+ 1

𝑏𝑚∗
𝑛

ª®¬ ,
(𝑖𝑖𝑖)
=

∑
𝑡 ∈T∗

𝑛


𝑏𝑚∗

𝑛
+ 1

𝑏𝑚∗
𝑛

𝜙 ′
𝑚∗

𝑛

(
𝑤
𝑚∗

𝑛

𝑡

)
+ 𝑟𝑚

∗
𝑛, 𝑗

∗
𝑛 − 𝜙𝑚∗

𝑛

©­«
𝑉
𝑚∗

𝑛

𝑛−1,𝑡
+ 1

𝑏𝑚∗
𝑛

ª®¬
 ,

(𝑖𝑣)
≤

∑
𝑡 ∈T∗

𝑛

[
𝜉𝑚

∗
𝑛𝜙 ′

𝑚∗
𝑛

(
𝑤
𝑚∗

𝑛

𝑡

)
+ 𝑟𝑚

∗
𝑛, 𝑗

∗
𝑛 − 𝜙𝑚∗

𝑛

(
𝑤
𝑚∗

𝑛

𝑡

)]
,

(𝑣)
≤

∑
𝑡 ∈T∗

𝑛

[
𝑟𝑚

∗
𝑛, 𝑗

∗
𝑛 − 𝑟𝑚

∗
𝑛, 𝑗𝑡 + 𝑟𝑚

∗
𝑛, 𝑗𝑡

𝛼

]
,

(𝑣𝑖)
≤ 𝑟𝑚

∗
𝑛, 𝑗

∗
𝑛

𝛼
· 𝑒𝑛 =

1

𝛼

Δ𝑃𝑛

𝑝
𝑚∗

𝑛, 𝑗
∗
𝑛

𝑛

.

By substituting

∑
𝑡 ∈T∗

𝑛
Λ
𝑚∗

𝑛, 𝑗
∗
𝑛

𝑛 = 𝑒𝑛Λ
𝑚∗

𝑛, 𝑗
∗
𝑛

𝑛 and arranging the terms,

we can easily check the equality (ii). Based on Lagrange’s mean

value theorem, there exists𝑤
𝑚∗

𝑛

𝑡 ∈ [𝑉𝑚∗
𝑛

𝑛−1,𝑡
/𝑏𝑚∗

𝑛
, (𝑉𝑚∗

𝑛

𝑛−1,𝑡
+ 1)/𝑏𝑚∗

𝑛
]

such that ∀𝑡 ∈ T ∗
𝑛 ,

𝜙𝑚∗
𝑛

(
(𝑉𝑚∗

𝑛

𝑛−1,𝑡
+ 1)/𝑏𝑚∗

𝑛

)
− 𝜙𝑚∗

𝑛

(
𝑉
𝑚∗

𝑛

𝑛−1,𝑡
/𝑏𝑚∗

𝑛

)
= 𝜙 ′

𝑚∗
𝑛

(
𝑤
𝑚∗

𝑛

𝑡

)
1

𝑏𝑚∗
𝑛

.

We can then get equality (iii). Since (𝑉𝑚∗
𝑛

𝑛−1,𝑡
+ 1)/𝑏𝑚∗

𝑛
≥ 𝑤

𝑚∗
𝑛

𝑡 and

the value function is non-decreasing, the inequality (iv) holds. Let

𝑡∗𝑛 = max𝑡 ∈T∗
𝑛
𝑤
𝑚∗

𝑛

𝑡 . Then 𝑤
𝑚∗

𝑛

𝑡∗𝑛
is the largest charger utilization

level, at which one more charger is scheduled to be activated (i.e.,

𝑋
𝑚∗

𝑛, 𝑗
∗
𝑛

𝑛,𝑡∗𝑛
= 1). Based on Equation (13), if 𝑤

𝑚∗
𝑛

𝑡 ∈ [ℓ𝑚∗
𝑛, 𝑗𝑡−1, ℓ𝑚

∗
𝑛, 𝑗𝑡 ),

we have inequality (v). Note that 𝑟𝑚
∗
𝑛, 𝑗𝑡 increases with the increase

of𝑤
𝑚∗

𝑛

𝑡 . We then have 𝑟𝑚
∗
𝑛, 𝑗𝑡 ≤ 𝑟

𝑚∗
𝑛, 𝑗𝑡∗𝑛 . The value of 𝑟

𝑚∗
𝑛, 𝑗𝑡∗𝑛 is de-

termined by which segment𝑤
𝑚∗

𝑛

𝑡∗𝑛
lies in. Recall the online algorithm

will recommend (𝑚∗
𝑛, 𝑗

∗
𝑛) only if 𝑟𝑚

∗
𝑛, 𝑗

∗
𝑛 > 𝜁

𝑚∗
𝑛

𝑛 = 𝜙𝑚∗
𝑛
(𝑉𝑚∗

𝑛

𝑛−1,𝑡∗𝑛
/𝑏𝑚∗

𝑛
).

Thus, we have𝑉
𝑚∗

𝑛

𝑛−1,𝑡∗𝑛
/𝑏𝑚∗

𝑛
∈ [ℓ𝑚∗

𝑛, 𝑗
∗
𝑛−1, ℓ𝑚

∗
𝑛, 𝑗

∗
𝑛 ). Since the segment

points only take discrete values,𝑤
𝑚∗

𝑛

𝑡∗𝑛
≤ (𝑉𝑚∗

𝑛

𝑛−1,𝑡∗𝑛
+1)/𝑏𝑚∗

𝑛
≤ ℓ𝑚

∗
𝑛, 𝑗

∗
𝑛 .

Thus, we have 𝑟𝑚
∗
𝑛, 𝑗𝑡 ≤ 𝑟

𝑚∗
𝑛, 𝑗𝑡∗𝑛 = 𝑟𝑚

∗
𝑛, 𝑗

∗
𝑛 and the last inequality (vi)

holds. This completes the proof. □

5.2 Proof for Theorem 4.4
To design the value function provided by Theorem 4.4, we first prove

Lemma 4.3 and show how to design an asymptotic value function

when 𝑏𝑚 → ∞ based on the sufficient conditions in Theorem 4.2.

When 𝑏𝑚 is a finite value, we design a discrete value function by

rounding the asymptotic value function, and rigorously prove the

competitive ratio it can achieve.

5.2.1 Asymptotic Case (𝑏𝑚 → ∞). Without the constraints of

the discreteness as 𝑏𝑚 → ∞,∀𝑚 ∈ M, the value function can be

derived by changing inequality in (13) to equality and solving the

ODEs with boundary conditions for each segment.

The general solution of the 𝑗-th segment is 𝜙𝑚 (𝑤) = 𝑎𝑚,𝑗𝑒𝑤 −
(1/𝛼𝑚,𝑗 − 1)𝑟𝑚,𝑗

, where 𝑎𝑚,𝑗
and 𝛼𝑚,𝑗

are parameters to be deter-

mined. Substituting the boundary conditions we have{
𝑎𝑚,𝑗𝑒ℓ

𝑚,𝑗−1 − (1/𝛼𝑚,𝑗 − 1)𝑟𝑚,𝑗 = 𝑟𝑚,𝑗−1,

𝑎𝑚,𝑗𝑒ℓ
𝑚,𝑗 − (1/𝛼𝑚,𝑗 − 1)𝑟𝑚,𝑗 = 𝑟𝑚,𝑗 ,

and the parameters can be solved as

𝑎𝑚,𝑗 =
𝑟𝑚,𝑗 − 𝑟𝑚,𝑗−1

𝑒ℓ
𝑚,𝑗 − 𝑒ℓ

𝑚,𝑗−1
, 𝛼𝑚,𝑗 =

1 − 𝑒−(ℓ
𝑚,𝑗−ℓ𝑚,𝑗−1)

1 − 𝑟𝑚,𝑗−1/𝑟𝑚,𝑗
.

Note that the competitive ratio 𝛼 = min𝑚∈M, 𝑗 ∈J𝑚 𝛼𝑚,𝑗
is deter-

mined by the minimum 𝛼𝑚,𝑗
over all stations and all segments.

Thus, in order to maximize the minimum 𝛼𝑚,𝑗
, for each station𝑚,

we set 𝛼𝑚,𝑗
of each segment to be equal, namely,

𝛼𝑚 = 1 − 𝑒−ℓ
𝑚,1

= · · · = 1 − 𝑒−(ℓ
𝑚,𝐽𝑚−ℓ𝑚,𝐽𝑚−1)

1 − 𝑟𝑚,𝐽𝑚−1/𝑟𝑚,𝐽𝑚
. (23)

Lemma 5.4. For ∀𝑚 ∈ M, there exists a solution {ℓ̂𝑚,𝑗 }𝑗 ∈J𝑚 to
Equation (23) and ℓ𝑚,𝐽𝑚 = 1.

The proof of Lemma 5.4 and the computation method for ℓ̂𝑚,𝑗

have been presented in Appendix C. Based on Lemma 5.4, the com-

petitive ratio is determined by 𝛼 = min𝑚∈M 𝛼𝑚 = min𝑚∈M 1 −
𝑒−ℓ̂

𝑚,1
. By substituting 𝛼𝑚 and {𝑎𝑚,𝑗 }𝑗 ∈J𝑚 , the asymptotic value

function (14) can be derived.

5.2.2 General Case (Finite 𝑏𝑚). If the number of chargers is finite,

we design the value function
˜𝜙 by rounding the asymptotic value

function 𝜙 as shown in Equation (15). Recall {ℓ̂𝑚,𝑗 }𝑗 ∈J𝑚 are the

segment points of the asymptotic value function 𝜙 and unneces-

sarily take discrete values. Thus, we cannot expect ORC( ˜𝜙) can
achieve a competitive ratio as good as that of the asymptotic case.

We next prove the competitive ratio of ORC( ˜𝜙).
To analyze ORC( ˜𝜙), we can follow the proof of Theorem 4.2

until the procedure to bound the ratio of the primal and dual in-

crements Δ𝑃𝑛 and Δ𝐷𝑛 . The arguments in the proof of Lemma 5.3

fail when 𝑞 < ℓ̂𝑚,𝑗 < 𝑞 + 1/𝑏𝑚 , where 𝑞 = 𝑉𝑚
𝑛−1,𝑡

/𝑏𝑚 is the discrete

charger utilization level. This is because in this case, 𝜙𝑚 is not dif-

ferentiable in the interval (𝑞, 𝑞 + 1/𝑏𝑚) at the point ℓ̂𝑚,𝑗
and hence

the Lagrange’s mean value theorem cannot be applied to achieve

equality (iii). To bound the ratio of primal and dual increments, we

prove the inequality (24) in Lemma 5.5.

Lemma 5.5. The value function ˜𝜙 satisfies ∀𝑚 ∈ M, ∀𝑗 ∈ J𝑚 ,
when ⌈ℓ̂𝑚,𝑗−1𝑏𝑚⌉/𝑏𝑚 ≤ 𝑞 < ⌈ℓ̂𝑚,𝑗𝑏𝑚⌉/𝑏𝑚 , 𝑞 ∈ {0, 1/𝑏𝑚, . . . , 1},[

˜𝜙𝑚 (𝑞 + 1/𝑏𝑚) − ˜𝜙𝑚 (𝑞)
]
𝑏𝑚 − ˜𝜙𝑚 (𝑞) + 𝑟𝑚,𝑗

(24)

≤ 𝑟𝑚,𝑗

𝛼
(𝑏𝑚 + 1) (1 − 𝑒−2/𝑏𝑚 ) .
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The proof of Lemma 5.5 is presented in Appendix D. Inequality

(24) is the discrete version of the ODE (13). Based on this inequality,

we can bound the ratios of primal and dual increments as follows.

Δ𝐷𝑛

𝑝
𝑚∗

𝑛, 𝑗
∗
𝑛

𝑛

=
∑
𝑡 ∈T∗

𝑛

{[
𝜙𝑚∗

𝑛

(
(𝑉𝑚∗

𝑛

𝑛−1,𝑡
+ 1)/𝑏𝑚∗

𝑛

)
− 𝜙𝑚∗

𝑛

(
𝑉
𝑚∗

𝑛

𝑛−1,𝑡
/𝑏𝑚∗

𝑛

)]
𝑏𝑚∗

𝑛

+𝑟𝑚
∗
𝑛, 𝑗

∗
𝑛 − 𝜙𝑚∗

𝑛

(
(𝑉𝑚∗

𝑛

𝑛−1,𝑡
+ 1)/𝑏𝑚∗

𝑛

)}
,

≤
∑
𝑡 ∈T∗

𝑛

[
𝑟𝑚

∗
𝑛, 𝑗

∗
𝑛 +

[
(𝑏𝑚 + 1) (1 − 𝑒−2/𝑏𝑚 )

𝛼
− 1

]
𝑟𝑚

∗
𝑛, 𝑗𝑡

]
,

≤ (𝑏𝑚 + 1) (1 − 𝑒−2/𝑏𝑚 )
𝛼

Δ𝑃𝑛

𝑝
𝑚∗

𝑛, 𝑗
∗
𝑛

𝑛

.

Thus, the ORC( ˜𝜙) can achieve a competitive ratio of 𝛼/[(𝑏𝑚 +
1) (1 − 𝑒−2/𝑏𝑚 )].

6 EXPERIMENTAL RESULTS
In this section, we provide experimental results for our proposed

ORC algorithm.We construct the value function𝜙 in the asymptotic

case based on the setup information and then derive the rounding

version
˜𝜙 based on Equation (15). This case study aims to evaluate

the empirical performance of ORC( ˜𝜙) and compare it with other

benchmark online algorithms.

6.1 Simulation parameters
6.1.1 Real-world transportation network. We focus on a sim-

plified transportation network in Hong Kong. The city is divided

into 18 districts, which are connected by 32 main roads as shown in

Figure 1. The traveling time through each main road is estimated

based on Google map data. We assume that there are four public

charging stations that can provide charging services for private

EVs. The setup information of the four stations is listed in Table 1.

6.1.2 Generating EV requests. Each arriving session 𝑛 ∈ N in

the experiments is a tuple of random variables (𝐴𝑛, 𝐸𝑛, 𝐷𝑛) ∈ R3

+
where 𝐴𝑛 is the submission time; 𝐸𝑛 is the energy to be delivered

and 𝐷𝑛 is its deadline.

The arrival times {𝐴𝑛 : 𝑛 ∈ N} are generated according to a non-
homogeneous Poisson process, with arrival rate being the product

of the time-varying demand function depicted in Figure 2(a) and

the average total number of EV arrivals, which is 600 multiplied

by a load factor 𝜌 > 0. We generate EV requests with varying

𝜌 ∈ {0.6, . . . , 1.6} to investigate the impact of the total number

of requests on the performance of online algorithms. The demand

function describes the percentage of the hourly refueling demand of

gasoline stations within one week [14]. Therefore, the total number

of arriving sessions 𝑁 is a Poisson random variable with mean 600𝜌 .

The total number of arriving sessions are further divided into 18

districts proportionally according to its corresponding normalized

population density, which is visualized in Figure 2(b).

After assigning an arriving session 𝑛 ∈ N to the districts, we

estimate the driving times 𝑡𝑛,𝑚 to the four stations based on the

shortest paths in the transportation network shown in Figure 1.

The energy demand 𝐸𝑛 is a uniform random variable defined on

[12, 24] (kWh). We set the deadline as 𝐷𝑛 = 𝐴𝑛 + 𝑡𝑛,𝑚 + 𝑀𝑛 + 𝑈

where 𝐴𝑛 + 𝑡𝑛,𝑚 is when the EV (if it accepts the recommendation)
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Figure 1: Simplified transportation network of Hong Kong.

Table 1: Setup of Charging Stations

Station ID Location No. of Chargers Prices (cents/kWh)

A District 7 10 {40, 55, 75}
B District 10 10 {50, 70, 90}
C District 12 20 {50, 70, 90}
D District 18 20 {60, 90, 110}
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Figure 2: Time-varying demand for EV charging and geo-
graphically distributed population density.

arrives at the charging station 𝑚; 𝑀𝑛 := 𝐸𝑛/𝑅𝑛 is its minimum

charging time and𝑈 is a random variable uniformly distributed in

[0, 2] (hours). The charging rate is set as 𝑅𝑛 = 6,∀𝑛 ∈ N (kW).

6.1.3 Estimating choice probabilities. Weuse the choicemodel

described in Remark 2.2 to estimate the choice probability. Partic-

ularly, we sample the three preference parameters 𝜸𝑛 uniformly

from [0, 1], [20, 30], and [12000, 14000] for each EV 𝑛.

6.2 Benchmarks
We compare our ORC( ˜𝜙) with the following three benchmark on-

line algorithms. These benchmarks use the same scheduling al-

gorithm for EV charging by greedily assigning the energy to the

time slots with lowest utilization of chargers. They, however, dif-

fer in the sense that they adopt different rules for selecting the

recommendations.

• Myopic. This algorithm recommends (𝑚, 𝑗) that maximizes

the expected revenue of the current EV by solving the prob-

lem (7) without considering future EV arrivals and the im-

balance of the charging demand over different stations.
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Figure 3: Comparison of empirical ratios achieved by differ-
ent online algorithms. Results are averaged over 100 inde-
pendent simulations.

• Heuristic-Greedy. This algorithm recommends the nearest

charging station that is feasible to schedule the charging

with the lowest price.

• Heuristic-Conservative. In contrast toHeuristic-Greedy, this
algorithm offers the nearest station at the highest price.

We compute the total revenue collected by each online algorithm

listed above. In each independent simulation, the arriving sessions

{(𝐴𝑛, 𝐸𝑛, 𝐷𝑛) : 𝑛 ∈ N} are generated randomly as described in

Section 6.1.2 and the EV accepts the recommendation according to

the choice probabilities in (1). The final results are averaged over

100 independent simulations.

Let 𝑅ALG denote the total revenue of an online algorithm ALG
in each simulation and let 𝑅OPT denote the optimal value of the

upper bound problem (6), which is linear and can be solved by

the interior-point algorithm. We compare ORC( ˜𝜙) with the three

benchmark algorithms based on their empirical ratio, defined as

Empirical Ratio of ALG = 𝑅ALG/𝑅OPT . (25)

Since it is computationally difficult to obtain the optimal offline

decision 𝜋∗ in (4), we choose the optimal benchmark of the em-

pirical ratio as the upper bound of the expected optimal revenue.

Therefore, the average of the empirical ratio is a lower bound of

the competitive ratio (5). Moreover, the empirical ratio is defined

for each realization of EVs’ random choices, and hence, the total

collected revenue sometimes can be greater than the upper bound

of the expected revenue. Thus, the empirical ratio may be larger

than one for certain realizations. But the average empirical ratio cor-

responding to each arrival instance (i.e., average of 100 simulations)

is guaranteed to be smaller than one.

6.3 Performance evaluation
The numerical results are shown in Figures 3 and 4, with load

factors selected from {0.6, . . . , 1.6}.
Figure 3 compares the empirical ratios that are achieved by our

proposed ORC and other three benchmark online algorithms. For

each arrival instance, the empirical ratios of ORC generally out-

perform those of all benchmark algorithms and ORC achieves the

largest average empirical ratio for all arrival instances. The figure

also highlights that the average empirical ratio forORC is very close

to 1, which is much larger than the theoretical competitive ratio
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Figure 4: Comparison of the average acceptance ratios
achieved by different online algorithms. Results are aver-
aged over 100 independent simulations.

0.254 for this simulation setup. This theoretical value is calculated

by solving Equation (28) to obtain {ℓ̂𝑚,1}∀𝑚∈M based on bisection

search, and then substituting it to the expression of 𝛼
˜𝜙
in Theorem

4.4. The main reason is that the competitive ratio is derived for the

worse-case scenario for all possible arriving instances. Moreover,

with the increase of the load factor 𝜌 , the performance gap between

ORC and Myopic increases. This is because balancing the demand

over stations and reserving capacity for future arrivals become

more important in high-demand cases, which is also the reason

for that the greedy and conservative heuristics perform worse and

better, respectively as 𝜌 becomes larger.

Figure 4 displays the average acceptance ratios, i.e., the ratio of

the number of served charging sessions and that of the total charg-

ing sessions. Myopic and Heuristic-Greedy serve more charging

sessions in all cases since both algorithms recommend available

charging stations and allocate available chargers in an aggressive

manner without reserving some chargers for future EV arrivals,

which may accept higher prices. In comparison, our proposed ORC
achieves a medium average acceptance ratio to trade off the ag-

gressiveness and conservativeness when allocating the resources

without future information. In this way, ORC achieves a much

better expected total revenue as shown in Figure 3.

7 CONCLUSIONS
In this paper we introduce an online algorithm, ORC, that can
jointly decide recommendation and charging schedules for sequen-

tial EV arrivals in a network of charging stations. Sufficient con-

ditions for ensuring that ORC has a constant competitive ratio

are provided. Based on the conditions, we design an explicit value

function for ORC and its competitive ratio is also given. Numerical

experiments validate the effectiveness of ORC by showing that it

outperforms other benchmark online algorithms.
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A PROOF OF LEMMA 2.3
Let {𝑌𝑚,𝑗

𝑛 (O𝑛), 𝑋𝑚,𝑗
𝑛,𝑡 (O𝑛)} denote the decisions made by the op-

timal decision rule 𝜋∗ for EV 𝑛 with the offline information O𝑛 .

𝑌
𝑚,𝑗
𝑛 (O𝑛) and 𝑋

𝑚,𝑗
𝑛,𝑡 (O𝑛) only depend on the realizations of EVs’

choices, i.e.,𝒘1, . . . ,𝒘𝑛−1. Therefore, 𝑌
𝑚,𝑗
𝑛 (O𝑛) and 𝑋𝑚,𝑗

𝑛,𝑡 (O𝑛) are
both independent of𝑊

𝑚,𝑗
𝑛 . Let 𝑦

𝑚,𝑗
𝑛 = E[𝑌𝑚,𝑗

𝑛 (O𝑛)] and 𝑥
𝑚,𝑗
𝑛𝑡 =

E[𝑋𝑚
𝑛,𝑡 (O𝑛)], where the expectation is taken with respective to the

previous 𝑛 − 1 EVs’ random choices. The optimal expected revenue

can be denoted by

EW [OPT(I;W)] =
𝑁∑
𝑛=1

𝑀∑
𝑚=1

𝐽∑
𝑗=1

(𝑒𝑛𝑟𝑚,𝑗 ) · EW [𝑊𝑚,𝑗
𝑛 · 𝑌𝑚,𝑗

𝑛 (O𝑛)],

=

𝑁∑
𝑛=1

𝑀∑
𝑚=1

𝐽∑
𝑗=1

(𝑒𝑛𝑟𝑚,𝑗 ) · 𝑝𝑚,𝑗
𝑛 · 𝑦𝑚,𝑗

𝑛 ,

which is the objective of the problem (6) when 𝑦
𝑚,𝑗
𝑛 = 𝑦

𝑚,𝑗
𝑛 . If

we can show {𝑦𝑚,𝑗
𝑛 }𝑛,𝑚,𝑗 and {𝑥𝑚,𝑗

𝑛,𝑡 }𝑛,𝑡,𝑚,𝑗 are a feasible solution

to the problem (6), it follows EW [OPT(I;W)] ≤ OPT(I). Since
constraints (3a)-(3e) are respected by the optimal decision rules

for any realizations ofW, we can take expectation on both sides

of these constraints and this leads to the constraints (6b)-(6f) with

{𝑦𝑚,𝑗
𝑛 }𝑛,𝑚,𝑗 and {𝑥𝑚,𝑗

𝑛,𝑡 }𝑛,𝑡,𝑚,𝑗 being substituted. Note that we use

the independence of 𝑋
𝑚,𝑗
𝑛,𝑡 (O𝑛) and𝑊𝑚,𝑗

𝑛 when taking expectation

for (3b). Thus, {𝑦𝑚,𝑗
𝑛 }𝑛,𝑚,𝑗 and {𝑥𝑚,𝑗

𝑛,𝑡 }𝑛,𝑡,𝑚,𝑗 are a feasible solution

to the problem (6) and hence EW [OPT(I;W)] is an upper bound

of OPT(I).

B PROOF OF LEMMA 5.2
Conditional on F𝑛 or equivalently the random choices of the previ-

ous 𝑛 − 1 EVs {𝒘1, . . . ,𝒘𝑛−1}, 𝑌𝑚,𝑗
𝑛 , 𝑋

𝑚,𝑗
𝑛,𝑡 and 𝑉𝑚

𝑛−1,𝑡
are all deter-

ministic values. We then have the conditional expectation

E[𝐻𝑛 |F𝑛] = E


𝑀∑

𝑚=1

𝐽𝑚∑
𝑗=1

𝑌
𝑚,𝑗
𝑛 𝑊

𝑚,𝑗
𝑛 (𝑟𝑚,𝑗 − Λ

𝑚,𝑗
𝑛 )𝑒𝑛 |F𝑛


=

𝑀∑
𝑚=1

𝐽𝑚∑
𝑗=1

𝑌
𝑚,𝑗
𝑛 𝑝

𝑚,𝑗
𝑛 (𝑟𝑚,𝑗 − Λ

𝑚,𝑗
𝑛 )𝑒𝑛, (26)

(𝑖)
= max

{
max𝑚∈M, 𝑗 ∈J𝑚 𝑝

𝑚,𝑗
𝑛 (𝑟𝑚,𝑗 − Λ

𝑚,𝑗
𝑛 )𝑒𝑛, 0

}
,

≥ 𝑝
𝑚,𝑗
𝑛 (𝑟𝑚,𝑗 − Λ

𝑚,𝑗
𝑛 )𝑒𝑛,∀𝑚 ∈ M, 𝑗 ∈ J𝑚 .

Equality (𝑖) holds since 𝑌𝑚,𝑗
𝑛 is determined based on Equations (10)

and (11) to choose themaximumnon-negative 𝑝
𝑚,𝑗
𝑛 (𝑟𝑚,𝑗−Λ𝑚,𝑗

𝑛 ). By
taking expectation on both sides of above equation with respective

to F𝑛 and applying tower property, we show that𝜂𝑛 and
¯𝜆
𝑚,𝑗
𝑛 satisfy

the constraint (18b), namely,

𝜂𝑛 = E[𝐻𝑛] = EF𝑛 [E[𝐻𝑛 |F𝑛]]

≥ EF𝑛 [𝑝
𝑚,𝑗
𝑛 (𝑟𝑚,𝑗 − Λ

𝑚,𝑗
𝑛 )𝑒𝑛]

= 𝑝
𝑚,𝑗
𝑛 (𝑟𝑚,𝑗 − ¯𝜆

𝑚,𝑗
𝑛 )𝑒𝑛,∀𝑚 ∈ M, 𝑗 ∈ J𝑚 .
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Next, by taking conditional expectation on 𝐵
𝑚,𝑗
𝑛,𝑡 , we have

E[𝐵𝑚,𝑗
𝑛,𝑡 |F𝑛] = 𝑋

𝑚,𝑗
𝑛,𝑡 𝑝

𝑚,𝑗
𝑛 [Λ𝑚,𝑗

𝑛 − 𝜙𝑚 (𝑉𝑚
𝑛−1,𝑡/𝑏𝑚)], (27)

(𝑖𝑖)
≥ 𝑝

𝑚,𝑗
𝑛 [Λ𝑚,𝑗

𝑛 − 𝜙𝑚 (𝑉𝑚
𝑛−1,𝑡 /𝑏𝑚)],

≥ 𝑝
𝑚,𝑗
𝑛 [Λ𝑚,𝑗

𝑛 − 𝜙𝑚 (𝑉𝑚
𝑁,𝑡/𝑏𝑚)] .

When 𝑋
𝑚,𝑗
𝑛,𝑡 = 1, inequality (ii) holds naturally. When 𝑋

𝑚,𝑗
𝑛,𝑡 = 0,

there exist two cases. If the station-price (𝑚, 𝑗) is not offered, i.e.,
𝑌
𝑚,𝑗
𝑛 = 0, Λ

𝑚,𝑗
𝑛 = 0 by definition in (20) and inequality (ii) holds. If

(𝑚, 𝑗) is offered while the EV 𝑛 is not scheduled to charge at time

𝑡 , we have Λ
𝑚,𝑗
𝑛 − 𝜙𝑚 (𝑉𝑚

𝑛−1,𝑡
/𝑏𝑚) ≤ 0, i.e., the cost of activating

one more charger at time 𝑡 is no less than the marginal cost of the

charging session 𝑛 at station𝑚. Thus, inequality (ii) still holds in

this case. Since 𝑉𝑚
𝑛−1,𝑡

≤ 𝑉𝑚
𝑁,𝑡

and the value function 𝜙𝑚 is non-

decreasing, the last inequality holds. Finally, we take expectation

with respective to F𝑛 on both sides of above inequality and we

show 𝜇𝑚𝑡 ,
¯𝜆
𝑚,𝑗
𝑛 , and

¯𝛽
𝑚,𝑗
𝑛,𝑡 satisfy the constraint (18c).

¯𝛽
𝑚,𝑗
𝑛,𝑡 = E[𝐵𝑚,𝑗

𝑛,𝑡 ] = EF𝑛 [E[𝐵
𝑚,𝑗
𝑛,𝑡 |F𝑛]]

≥ EF𝑛 [𝑝
𝑚,𝑗
𝑛 [Λ𝑚,𝑗

𝑛 − 𝜙𝑚 (𝑉𝑚
𝑁,𝑡/𝑏𝑚)]],

= 𝑝
𝑚,𝑗
𝑛 ( ¯𝜆

𝑚,𝑗
𝑛 − 𝜇𝑚𝑡 ),∀𝑛 ∈ N ,𝑚 ∈ M, 𝑗 ∈ J𝑚, 𝑡 ∈ T𝑛,𝑚 .

C PROOF OF LEMMA 5.4
Define the length of the 𝑗-th segment as 𝜎𝑚,𝑗 = ℓ𝑚,𝑗 − ℓ𝑚,𝑗−1,∀𝑗 ∈
J𝑚

. Based on Equation (23), 𝜎𝑚,𝑗
can be represented as a function

of 𝜎𝑚,1
, i.e.,

𝜎𝑚,𝑗 = − ln

[
𝑟𝑚,𝑗−1

𝑟𝑚,𝑗
+

(
1 − 𝑟𝑚,𝑗−1

𝑟𝑚,𝑗

)
𝑒−𝜎

𝑚,1

]
, 𝑗 = 2, . . . , 𝐽𝑚 .

Since

∑
𝑗 ∈J𝑚 𝜎𝑚,𝑗 = 1, we have

𝑒−𝜎
𝑚,1

∏𝐽𝑚

𝑗=2

[
𝑟𝑚,𝑗−1

𝑟𝑚,𝑗
+

(
1 − 𝑟𝑚,𝑗−1

𝑟𝑚,𝑗

)
𝑒−𝜎

𝑚,1

]
= 𝑒−1 . (28)

Define 𝑔(𝜎𝑚,1) as the left hand side of the above equation. 𝑔(𝜎𝑚,1)
is a non-increasing function in [0, 1] with 𝑔(0) = 1 and

𝑔(1) = 𝑒−1

∏𝐽𝑚

𝑗=2

[
𝑟𝑚,𝑗−1

𝑟𝑚,𝑗
(1 − 𝑒−1) + 𝑒−1

]
< 𝑒−1 .

Thus, there must exist a solution to 𝑔(𝜎𝑚,1) = 𝑒−1
and hence there

exists segments points {ℓ̂𝑚,𝑗 }𝑗 ∈J𝑚 that satisfy Equation (23). Since

𝑔(𝜎𝑚,1) is monotonic in [0, 1], bisection search can be used to find

𝜎𝑚,1
. We can then compute all segment points {ℓ̂𝑚,𝑗 }𝑗 ∈J𝑚 .

D PROOF OF LEMMA 5.5
We check the inequality in the following three cases.

Case (i): when 𝑞 = ⌈ℓ̂𝑚,𝑗𝑏𝑚⌉/𝑏𝑚 − 1/𝑏𝑚 , we have[
˜𝜙𝑚 (𝑞 + 1/𝑏𝑚) − ˜𝜙𝑚 (𝑞)

]
𝑏𝑚 + 𝑟𝑚,𝑗 − ˜𝜙𝑚 (𝑞)

(𝑖)
=

[
𝜙𝑚 (ℓ̂𝑚,𝑗 ) − 𝜙𝑚 (𝑞)

]
𝑏𝑚 + 𝜙𝑚 (ℓ̂𝑚,𝑗 ) − 𝜙𝑚 (𝑞),

(𝑖𝑖)
=

𝑟𝑚,𝑗 − 𝑟𝑚,𝑗−1

𝑒 ℓ̂
𝑚,𝑗 − 𝑒 ℓ̂

𝑚,𝑗−1

[
𝑒 ℓ̂

𝑚,𝑗

− 𝑒𝑞
]
(𝑏𝑚 + 1),

= 𝑟𝑚,𝑗 · 1 − 𝑟𝑚,𝑗−1/𝑟𝑚,𝑗

1 − 𝑒−(ℓ̂𝑚,𝑗−ℓ̂𝑚,𝑗−1)

[
1 − 𝑒𝑞−ℓ̂

𝑚,𝑗
]
(𝑏𝑚 + 1),

(𝑖𝑖𝑖)
=

𝑟𝑚,𝑗

𝛼

[
1 − 𝑒𝑞−ℓ̂

𝑚,𝑗
]
(𝑏𝑚 + 1) ≤ 𝑟𝑚,𝑗

𝛼
(𝑏𝑚 + 1) (1 − 𝑒−1/𝑏𝑚 ),

where equalities (i) and (ii) are obtained by substituting
˜𝜙𝑚 and 𝜙𝑚

in Equations (14) and (15), and equality (iii) is from Equation (23).

Case (ii): when ⌈ℓ̂𝑚,𝑗−1𝑏𝑚⌉/𝑏𝑚 < 𝑞 < ⌈ℓ̂𝑚,𝑗𝑏𝑚⌉/𝑏𝑚 − 1/𝑏𝑚 .[
˜𝜙𝑚 (𝑞 + 1/𝑏𝑚) − ˜𝜙𝑚 (𝑞)

]
𝑏𝑚 + 𝑟𝑚,𝑗 − ˜𝜙𝑚 (𝑞)

= [𝜙𝑚 (𝑞 + 1/𝑏𝑚) − 𝜙𝑚 (𝑞)] 𝑏𝑚 + 𝜙𝑚 (ℓ̂𝑚,𝑗 ) − 𝜙𝑚 (𝑞),

=
𝑟𝑚,𝑗 − 𝑟𝑚,𝑗−1

𝑒 ℓ̂
𝑚,𝑗 − 𝑒 ℓ̂

𝑚,𝑗−1

[
(𝑏𝑚 − (𝑏𝑚 + 1)𝑒−1/𝑏𝑚 )𝑒𝑞+1/𝑏𝑚 + 𝑒 ℓ̂

𝑚,𝑗
]
,

(𝑖𝑣)
≤ 𝑟𝑚,𝑗 − 𝑟𝑚,𝑗−1

𝑒 ℓ̂
𝑚,𝑗 − 𝑒 ℓ̂

𝑚,𝑗−1

[
(𝑏𝑚 − (𝑏𝑚 + 1)𝑒−1/𝑏𝑚 )𝑒 ℓ̂

𝑚,𝑗

+ 𝑒 ℓ̂
𝑚,𝑗

]
,

=
𝑟𝑚,𝑗

𝛼
(𝑏𝑚 + 1) (1 − 𝑒−1/𝑏𝑚 ),

where inequality (iv) holds since 𝑏𝑚 − (𝑏𝑚 + 1)𝑒−1/𝑏𝑚 ≥ 0 for

𝑏𝑚 = 1, 2, . . . , and 𝑞 + 1/𝑏𝑚 ≤ ℓ̂𝑚,𝑗
.

Case (iii): when 𝑞 = ⌈ℓ̂𝑚,𝑗−1𝑏𝑚⌉/𝑏𝑚 .[
˜𝜙𝑚 (𝑞 + 1/𝑏𝑚) − ˜𝜙𝑚 (𝑞)

]
𝑏𝑚 + 𝑟𝑚,𝑗 − ˜𝜙𝑚 (𝑞)

=
[
𝜙𝑚 (𝑞 + 1/𝑏𝑚) − 𝜙𝑚 (ℓ̂𝑚,𝑗−1)

]
𝑏𝑚 + 𝜙𝑚 (ℓ̂𝑚,𝑗 ) − 𝜙𝑚 (ℓ̂𝑚,𝑗−1),

=
𝑟𝑚,𝑗 − 𝑟𝑚,𝑗−1

𝑒 ℓ̂
𝑚,𝑗 − 𝑒 ℓ̂

𝑚,𝑗−1

[
(𝑏𝑚 − (𝑏𝑚 + 1)𝑒 ℓ̂

𝑚,𝑗−1−𝑞−1/𝑏𝑚 )𝑒𝑞+1/𝑏𝑚 + 𝑒 ℓ̂
𝑚,𝑗

]
,

(𝑣)
≤ 𝑟𝑚,𝑗 − 𝑟𝑚,𝑗−1

𝑒 ℓ̂
𝑚,𝑗 − 𝑒 ℓ̂

𝑚,𝑗−1

[
(𝑏𝑚 − (𝑏𝑚 + 1)𝑒 ℓ̂

𝑚,𝑗−1−𝑞−1/𝑏𝑚 )𝑒 ℓ̂
𝑚,𝑗

+ 𝑒 ℓ̂
𝑚,𝑗

]
,

≤ 𝑟𝑚,𝑗

𝛼
(𝑏𝑚 + 1) (1 − 𝑒−2/𝑏𝑚 ).

Note that −2/𝑏𝑚 ≤ ℓ̂𝑚,𝑗−1 −𝑞 − 1/𝑏𝑚 ≤ −1/𝑏𝑚 . Thus, 𝑏𝑚 − (𝑏𝑚 +
1)𝑒 ℓ̂𝑚,𝑗−1−𝑞−1/𝑏𝑚 ≥ 𝑏𝑚 − (𝑏𝑚 + 1)𝑒−1/𝑏𝑚 ≥ 0 and inequality (v)

holds. Combining the three cases, we have the inequality (24).
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