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Abstract— We consider an online version of the well-
studied network utility maximization problem, where users
arrive one by one and a network operator makes irrevocable
rate allocation decisions for each user without knowing the
details of future arrivals. We propose a threshold-based al-
gorithm and analyze its worst-case performance. We prove
that the competitive ratio of the proposed algorithm is
logarithmic in the maximum number of links requested by a
user. Extensive simulations are conducted to demonstrate
the performance advantage of our proposed algorithm in
comparison with two state-of-the-art algorithms. In addi-
tion, we devise an adaptive implementation of our algorithm
with online learning.

Index Terms— Online algorithms, networked control sys-
tems, communication networks, adaptive control.

I. INTRODUCTION

NETWORK utility maximization (NUM) is a general
optimization paradigm of vital importance in the field

of networking. It has been widely applied since the seminal
work by Kelly et al. [1]. For example, it often serves as
the underlying model to draw insights into understanding
and designing congestion control mechanisms in computer
networks [1] and media access control protocols in wireless
networks [2], [3]. In addition, the utility-based models are
shown to be effective for the power-aware load balancing and
queueing in communication network management [4]. Utility-
based maximization has also been shown to play a significant
role in areas beyond traditional communication networks, such
as the demand response in power systems [5], electric vehicle
charging control [6], information dissemination in vehicular
ad-hoc networks [7], and many other applications [8]–[11].

Existing research on NUM usually assumes users are static.
Therefore, it is focused on designing distributed algorithms
and corresponding convergence issues. However, users usually
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arrive in an online manner. For example, hosts come sequen-
tially when requesting network access in public networks, and
cloud service requests arrive one by one at a cloud data center.
Thus, we consider an online version of NUM and term it
as online network utility maximization (ONUM). Compared
with its offline counterpart, the difficulty of ONUM originates
from the fact that the information about the problem, e.g., the
utility function, is revealed piece by piece. We need to make
irrevocable decisions depending only on causal information
(i.e., the past and current information), and the aim is to be as
close as possible to the offline optimum that can be obtained
if all information is given from the start.

Efforts exist in the literature that deal with online resource
allocation with constraints. Some works, such as [12] and
[13], use online learning to solve the allocation problem under
the regret minimization framework and usually assume that
utility functions are drawn i.i.d. from an unknown distribution.
However, the i.i.d. assumption may not be valid, and in [13],
constraints are allowed to be violated. Bandit feedback in
online resource allocation has also attracted attention in recent
years [14], [15], where only the function value of the action
taken will be observed. In the online learning framework, the
algorithms make decisions before observing the environment,
and one usually uses regret as the performance metric, assum-
ing a static or a weakly dynamic benchmark. For example,
[14] uses the instantaneous optimal up to the current round
as the benchmark and [15] uses the optimal solution to an
expectation of an optimization problem.

In contrast, another stream of study assumes that the utility
functions are generated adversarially and designs algorithms
under the competitive analysis framework. This framework
allows 1-lookahead, i.e., the algorithm can observe the in-
formation in the current round before making a decision,
and compare algorithms with a strong benchmark, the opti-
mal algorithm in the hindsight. [16] and [17] consider the
online linear programming problem and the online packing
problem, respectively. However, both allow violation of the
constraints. One special case in [17] can ensure no constraints
are violated when all constraints coefficients are either 0 or 1;
however, the work just considers a simple linear objective with
no uncertainty. [18] and [19] consider non-linear uncertain
objectives and are the closest work to ours. However, the
non-linearity source is different from ours. They maximize
linear utilities of all users minus the convex cost of using the
resource. The concavity comes from the convex cost function
and is separable over resources. On the contrary, we aim to
maximize the total utility, where the individual utility functions
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are concave, and thus our objective is separable in users.
In this paper, we design online algorithms for the general

ONUM under the competitive analysis framework and en-
sure no violation of the constraints. We propose an online
threshold-based algorithm that makes an allocation based on
a threshold function. This function is an increasing function
of the link utilization level and an estimate of the pseudo cost
of using resources. Then the algorithm decides the allocation
by solving an optimization problem that maximizes the total
utility minus the pseudo cost.

One classical way to design and analyze competitive online
algorithms is to follow the online primal-dual framework,
which is based on the weak duality and has been applied to
several online problems, such as online covering and packing
[17] [20], online matching [21] and weighted paging [22], etc.
The threshold function used in the proposed algorithm is also
related to the dual variable, but we bypass the online primal-
dual analysis and adopt a different analysis method in this
paper, which directly bounds the offline optimal value by a
multiple of the online counterpart and gives an order-optimal
competitive ratio.

The contributions of this paper are three-fold:
• Algorithm. We design an online threshold-based algo-

rithm for ONUM with general concave utility functions
and hard capacity constraints. The threshold is an in-
creasing function of the resource utilization level, whose
curvature tunes the behavior of the algorithm, balancing
between being aggressive and conservative.

• Competitive Analysis. We show under the umbrella of
the competitive analysis framework, that when the thresh-
old function takes a certain form, the algorithm yields
a competitive ratio that is logarithmic in the maximum
number of links requested, which matches the lower
bound of the ONUM problem.

• Applications. We apply the algorithm to the online
bandwidth allocation problem based on a real network
topology and show that our algorithm is competitive
against two state-of-the-art algorithms.

This paper is organized as follows. In Section II, we
present the system model for ONUM and show applications
that fit the model. In Section III, we present the threshold-
based algorithm, give a rigorous competitive analysis of the
algorithm and show that the proposed algorithm achieves the
optimal competitive ratio. In Section IV, we first conduct
simulations using the Abilene network topology to show
its performance advantages under different arrival patterns.
Then, worst-case scenarios are constructed for validating the
theoretical analysis. Throughout the simulation section, two
state-of-the-art online algorithms are used as benchmarks. In
Section V, we conclude the paper and discuss promising future
directions.

II. ONLINE NETWORK UTILITY MAXIMIZATION

We describe the general system model for ONUM and
provide three exemplary applications in this section. A network
with a link set L is considered, where each link ℓ ∈ L
corresponds to an edge in the network graph and has a capacity
of cℓ. Each user comes to the network one by one.

Let N denote the set of users and let N be the total number
of users. Each user requests the access to a set of links Li,
whose cardinality is denoted by Li. In our problem, we assume
that the link set is determined before the arrival of the user and
the maximum link set size is L. The network operator decides
how much capacity should be allocated to the arriving user.
The allocation is equal for each link in the link set request
of a user. At any time, the total allocation on any link cannot
exceed its capacity. The ith user also comes with a utility
function gi(·) and a budget bi.

The utility is a function of the capacity allocated and
represents the revenue gained by the user. The budget is an
upper bound on the allocation. We denote the information
coming with user i by the tuple Ai = {gi(·),Li, bi}.

The goal is to design an online algorithm that determines
the allocation yi at the time of the ith arrival and maximizes
the total utility of all users. The difficulty of such algorithms is
the lack of future information at the time of decision making;
that is, yi is irrevocably determined without knowing the tuples
of future users, i.e., {Ak}k>i. The performance of an online
algorithm is usually evaluated by the competitive analysis
framework [23], and we briefly introduce the basics here.
Given an arrival sequence I= {A1, . . . , AN}, let ALG(I) be
the objective value achieved by an online algorithm. If the
full information of the future (the full arrival sequence) I
is disclosed at the beginning, our problem is formulated as
follows:

max
yi

∑
i∈N

gi(yi) (1a)

s.t.
∑

i:ℓ∈Li

yi ≤ cℓ,∀ℓ ∈ L, (1b)

0 ≤ yi ≤ bi,∀i ∈ N . (1c)

An off-the-shelf convex program solver can solve Problem
(1) optimally, and we denote the optimal objective value as
OPT(I). The performance of the online algorithm is typically
evaluated by the competitive ratio, defined as

α = max
I

OPT(I)
ALG(I)

.

The competitive ratio is desired to be as small as possible,
such that the algorithm performs as close as possible to the
offline optimum even under the worst case.

We make the following assumptions on the utility functions.

Assumption 1 gi(y) is increasing, concave and continuously
differentiable over [0, bi] and gi(0) = 0.

Assumption 2 The marginal utility averaged over the number
of links is bounded from above and below, i.e., g′

i(y)
Li
∈ [m,M ].

Assumption 1 is standard for NUM problems (e.g., [1], [3],
[5]). Typically, the user utility is increasing in the resource
allocated and concave because of the diminishing returns
property. Some commonly used utility functions are logarith-
mic and polynomial functions, and thus the differentiability
assumption is usually satisfied. Assumption 2 requires the first-
order derivatives of the utility functions to be bounded, which
is essential to achieve a bounded competitive ratio. Similar
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assumptions appear in other online optimization literature, e.g.,
the online knapsack problem [24]–[26] and one-way trading
problem [27], [28].

We now provide three exemplary applications, among oth-
ers, that fit into the ONUM model.

Online bandwidth allocation for video streaming. Avail-
able bit rate (ABR) service is proposed in asynchronous trans-
fer mode (ATM) networks to accommodate video streaming
and other applications with a variable bit rate. The ABR
service provides a minimum cell rate (MCR) guarantee for
each user, and the remaining capacity will be dynamically al-
located to users on demand. Consider an ATM network where
application requests/users come sequentially. Each application
request is binded with a source and a destination node, and the
MCR for the ith request, denoted by yi, needs to be decided
before establishing the connection. The routing path is a set
of links that connect its source and destination. For the ith
user, denote its routing path as Li and the number of links on
the routing path as Li = |Li|. Each user has a peak rate bi,
which is the highest rate at which the user can transmit. The
user utility, gi(yi), is modeled as a function of its allocated
MCR. The goal of the network operator is to allocate the MCR
in such a way that maximizes the total utility of all users. It
is not difficult to see that the problem of online bandwidth
allocation for variable bit rate (VBR) video streaming using
ABR service fits the ONUM framework well.

Online routing of virtual circuits [29]. In the simplest
version, requests ri = (si, di) come online with a predeter-
mined routing path between source si and destination di. The
algorithm will determine whether the request can be accepted.
If the request is accepted, the algorithm then decides how
much bandwidth yi should be allocated to the request and
establish a virtual circuit with the requested routing path.
The aggregate throughput is

∑
i yi, and thus a throughput-

maximizing objective is linear in the allocated bandwidth. The
methods and results developed in this paper can be easily
applied to this case.

Online flow control for wireless sensor networks [11].
A sensor network is modeled as a connected graph G(V,L),
where V denotes the sensor nodes and L denotes the logical
bidirectional communication links between the sensor nodes.
Due to the broadcast nature of sensors, each link ℓ ∈ L
has an interference link set ISℓ. Each sensor node v ∈ V
has an energy capacity ev and each link ℓ ∈ L has an
interference margin level cℓ, which guarantees the transmission
rate of the flow on a link if the margin level is observed
by all flows in the link’s interference link set. Traffic flows
are generated online. For the ith flow, it goes through a set
of sensors Vi and a set of links Li with the transmission
rate yi to be determined. Also, the ith flow is characterized
by a utility function gi(yi) that is strictly concave in yi.
There are two sets of constraints, the link capacity constraints∑

ℓ′∈ISℓ

∑
i:ℓ′∈Li

yi ≤ cℓ for each link ℓ ∈ L and the energy
constraints (et + er)

∑
i:v∈Vi

yi ≤ ev/T − ed for each sensor
v ∈ V , where T is the pre-specified sensor lifetime, et, er

and ed are the energy consumption per unit data during the
transmission, reception and idle state, respectively. The goal
is to maximize the sum of utility

∑
i gi(yi) subject to the two

sets of constraints. It can be studied under the ONUM model
by simply normalizing the parameters.

Remark Usually it is more realistic for applications that the
allocation for each user is only valid for a time duration. This
can be captured in our framework by treating time as another
resource, increasing the dimension of the decision space by
one. Moreover, this will not affect the logic of the analysis
in Section III, and only the competitive ratio will have an
additional log(D) term added, where D is the longest time
duration. In our presentation, we do not emphasize the time
dimension because we want to focus on the core problem of
how to allocate multiple capacitated resources against the
uncertainty.

III. COMPETITIVE ONLINE ALGORITHMS FOR ONUM
In this section, an online threshold-style algorithm for

ONUM is presented, followed by a competitive analysis for
the algorithm, where the competitive ratio is shown to be
logarithmic in the maximum number of links in a request.

Before turning to the algorithm, we first introduce an idea
that is common in the distributed optimization field. To solve
an optimization problem in a distributed manner, dual variables
are usually viewed as the shadow prices, which reflect the
costs of allocating additional units of resources at the current
state. Nodes individually solve a local optimization problem
that captures its own concern. The classical algorithm for
congestion control [1] also falls within this kind of studies.

A standard dual-based algorithm for the offline NUM prob-
lem is as follows, where each link is associated with a dual
price λℓ(t) at the beginning of the tth iteration and user
i determines its rate yi at the tth iteration by solving the
following maximization problem:

yi(λ
i(t)) = argmax

y≥0

(
gi(y)− λi(t)y

)
,∀i, (2)

where λi(t) =
∑

ℓ∈Li
λℓ(t) is the total price on the path of

user i. The dual prices will then be updated as follows:

λℓ(t+ 1) =

[
λℓ(t)− γ

(
cℓ −

∑
i:ℓ∈Li

yi(λ
i(t))

)]+
,∀ℓ, (3)

where t is the iteration index and γ is the step size at the
tth iteration. The ONUM and the offline NUM are different
in several ways. The ONUM can only access the causal
information (i.e., the past and the present information), while
the offline NUM has access to all information. Moreover,
decisions made by the ONUM cannot be revoked, but the
decision of the offline NUM is updated in each iteration. The
dual update above can also take the form of a function as
the algorithm in [1]. By iterating between the primal and dual
updates, yi and λℓ will converge to the optimal rate allocation
and dual prices for the optimization problem [30].

In the design of our algorithm, we also maximize the
term that is the utility function minus the pseudo-cost as
in the primal update (2). However, the aim of our problem
is different, and thus the estimation of the dual price or
the pseudo-cost differs. Distributed algorithms aim for the
convergence of the primal and dual solutions for a static
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optimization problem, in contrast, our algorithm strives to
reserve the right amount of resources for the future and makes
decision online based on only causal information. Thus, the
key is how to estimate the pseudo-cost, so that the worst-
case performance is guaranteed in the face of uncertainty. The
following subsections focus on answering this question.

A. Online Threshold-Based Algorithm Design

In our online algorithm, we design the link dual price
as a function of the link utilization level and introduce the
following definition:

Definition 1 (Threshold Function) A threshold function for
link ℓ, ϕℓ(ω) : [0, cℓ] → R+, is a non-decreasing continuous
function that evaluates the marginal utility of the resource at
the utilization level ω.

Contrary to equation (3) where the dual price of each link will
be iteratively updated based on the utilization, the threshold
function in our problem is a one-off value evaluation of
the remaining capacity because the decisions are irrevocable.
In essence, the threshold function characterizes the attitude
towards the uncertain future; that is, how much should we
reserve for the possible future arrivals with higher utility? This
part is missing in the offline problems [1], [30].

Next, we present our proposed algorithm in Algorithm 1
and term it as the online algorithm with threshold functions
ϕ := {ϕℓ}ℓ∈L (OAVFϕ). In detail, OAVFϕ uses the threshold
functions ϕℓ(·) to evaluate the scarcity of the remaining
capacity of link ℓ. We denote by ωi

ℓ the total consumption
of link ℓ after making decision for the ith user. At the time
when the utilization of link ℓ is s, the cost of using an
infinitesimal amount of capacity, ds, is estimated by ϕℓ(s)ds,
and thus the total charging cost of user i for link ℓ is∫ ωi−1

ℓ +yi

ωi−1
ℓ

ϕℓ(s)ds. OAVFϕ then determines yi by solving a
pseudo-utility maximization problem (4), where the user’s
pseudo-utility is defined as its utility gi(yi) minus the total
pseudo-cost charged.

In the sequel, a brief comment on the time complexity of
the proposed algorithm is provided. The problem in Equation
(4) is a one-dimensional convex optimization problem with a
box constraint. Define the first-order derivative of the objective
function as ∆i(y) = g′i(y)−

∑
ℓ∈Li

ϕℓ(ω
i−1
ℓ +y). The problem

in Equation (4) can be solved as follows: (i) If ∆i(0) ≤ 0,
yi = 0; (ii) if ∆i(bi) ≥ 0, yi = bi; (iii) otherwise, solve
∆i(yi) = 0 by the bisection algorithm since ∆i(y) is a non-
increasing function with ∆i(0) > 0 and ∆i(bi) < 0. The
bisection algorithm is with logarithmic time complexity, and
thus the problem can be solved efficiently.

Since all the design freedom of OAVFϕ lies in the threshold
function, the remainder of this section will be centered around
the following question: what form should ϕℓ take such that
OAVFϕ can yield a bounded competitive ratio?

B. Competitive Analysis

The following theorem provides a form of the threshold
function ϕℓ for OAVFϕ to have a bounded competitive ratio.

Algorithm 1 Online Algorithm with threshold functions
{ϕℓ}ℓ∈L (OAVFϕ)

Initialize: threshold functions {ϕℓ}ℓ∈L, initial utilization
ω0
ℓ = 0,∀ℓ;

for the ith user do
Observe user i’s request Ai = {gi(·),Li, bi};
Determine yi by solving the problem

yi = argmax
0≤y≤bi

(
gi(y)−

∑
ℓ∈Li

∫ ωi−1
ℓ +y

ωi−1
ℓ

ϕℓ(s)ds

)
; (4)

Update for links ℓ ∈ Li: ωi
ℓ = ωi−1

ℓ + yi;
end for

The competitive ratio is logarithmic in the maximum number
of links that an arrival can request.

Theorem 1 OAVFϕ is (α+ 1)-competitive if ϕℓ is given by

ϕℓ(ω) = m (exp (αω/2cℓ)− 1)

= m (Lθ + 1)
ω/cℓ −m,ω ∈ [0, cℓ], (5)

where α = 2 ln(Lθ + 1) and θ = M/m.

The threshold function estimates the pseudo charging cost
for making decisions. When the links are all vacant, the total
charging cost at the beginning is zero, and this increases
exponentially with the rate allocated. The capacity constraint
is automatically observed because the charging cost for any
single link gets close to LM when the utilization approaches
the capacity, higher than the marginal utility of any user. This
helps the algorithm act very conservatively and reserve enough
capacity for future arrivals.

The algorithm in [25] is proposed to solve an online 0/1
knapsack problem, which can also be solved by a threshold-
based algorithm. We extend this algorithm to continuous
decision variables and term it as posted-pricing because [25]
studies a posted-pricing mechanism. We use it as a benchmark
algorithm for the ONUM problem. The key difference between
the posted-pricing algorithm and ours lies in the threshold
functions. The one for the posted-pricing algorithm is defined
as follows:

ϕℓ(ω) =


m, ω ∈ [0, cℓ

ln θ+1 ],

m exp ((ln θ + 1)ω/cℓ − 1) , ω ∈ [ cℓ
ln θ+1 , cℓ],

∞, ω ∈ (cℓ,∞).

(6)

The two threshold functions are plotted for comparison in
Figure 1.

Next, some intuitions for the logarithmic competitive ratio
of our algorithm are provided. Consider an arrival sequence
containing two arrivals, the first arrival requests link ℓ, the
second arrival requests every link in L and the marginal
utilities per link of both arrivals are g′

i

Li
= M , the highest

possible. Consider all links have the same capacity 1 and both
arrivals can occupy the requested links up to their capacity. The
optimal choice in hindsight is to accept only the second arrival
because it provides higher utility for each unit capacity of link
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Fig. 1: Threshold functions

ℓ. The optimal return is LM . The posted-pricing algorithm
will only allocate capacity to the first arrival until link ℓ is
fully occupied and block the second arrival. The total utility
is M , and the competitive ratio is at least LM/M = L. On the
contrary, our proposed algorithm will stop allocating to the first
arrival when the resource utilization level is at most ϕ−1

ℓ (M)
and reserve more for the second arrival, leading to a higher
utility. Being conservative means to be more alert to scenarios
similar to the one described above, where some links become
the bottleneck too early, blocking arrivals of higher utility,
which is the main reason for the logarithmic competitive ratio
of our algorithm.

The formal proof of Theorem 1 is constituted by the
following three lemmas. The first lemma shows that OAVFϕ

will observe the capacity constraints automatically.

Lemma 1 OAVFϕ will not violate the capacity constraints.

Proof: Assume that the first capacity violation happens
after making a decision for the ith arrival. Denote the set of
violated links as Lo. Let us consider an alternative decision
ŷi =

(
cℓ0 − ωi−1

ℓ0

)
, where ℓ0 is the link closest to its capacity

in Lo, i.e., ℓ0 = argminℓ∈Lo

(
cℓ0 − ωi−1

ℓ

)
. It is clear that

ŷi < yi. By the mean value theorem and Assumption 2,

gi(yi)− gi(ŷi) = g′i(ξ)(yi − ŷi),

= g′i(ξ)(ω
i
ℓ0 − cℓ0), ξ ∈ [ŷi, yi]

≤ LiM(ωi
ℓ0 − cℓ0). (7)

The following also holds:

LiM(ωi
ℓ0 − cℓ0) ≤ LM(ωi

ℓ0 − cℓ0)

<

∫ ωi
ℓ0

cℓ0

ϕℓ0(s)ds

≤
∑
ℓ∈Li

∫ ωi−1
ℓ +yi

ωi−1
ℓ +ŷi

ϕℓ(s)ds. (8)

By combining (7) and (8), along with the equation∫ ωi−1
ℓ +yi

ωi−1
ℓ +ŷi

ϕℓ(s)ds =
∫ ωi−1

ℓ +yi

ωi−1
ℓ

ϕℓ(s)ds −
∫ ωi−1

ℓ +ŷi

ωi−1
ℓ

ϕℓ(s)ds,

we have

gi(yi)−
∑
ℓ∈Li

∫ ωi−1
ℓ +yi

ωi−1
ℓ

ϕℓ(s)ds

< gi(ŷi)−
∑
ℓ∈Li

∫ ωi−1
ℓ +ŷi

ωi−1
ℓ

ϕℓ(s)ds,

which contradicts the algorithm decision rule (4). Thus, the
assumption does not hold, and the OAVFϕ algorithm will not
violate the capacity constraints.

Lemma 2 The objective value of OAVFϕ is lower bounded
by the final dual prices as follows:

αALG ≥
∑
ℓ∈L

cℓϕ(ω
N
ℓ ). (9)

Proof: By the decision rule (4), we have for each i,

gi(yi) ≥
∑
ℓ∈Li

∫ ωi−1
ℓ +yi

ωi−1
ℓ

ϕℓ(s)ds.

Recall Assumption 2, g′i/Li ∈ [m,M ] and gi(yi) = gi(0) +
g′i(ξ)yi = g′i(ξ)yi, ξ ∈ [0, yi]. Then we have gi(yi) ≥ mLiyi.
Thus, the return of the online algorithm, ALG, is

N∑
i=1

gi(yi) ≥
1

2

∑
i∈N

gi(yi) +
1

2

∑
i∈N

∑
ℓ∈Li

∫ ωi−1
ℓ +yi

ωi−1
ℓ

ϕℓ(s)ds

≥ 1

2

∑
i∈N

mLiyi +
1

2

∑
i∈N

∑
ℓ∈Li

∫ ωi−1
ℓ +yi

ωi−1
ℓ

ϕℓ(s)ds

=
m

2

∑
ℓ∈L

ωN
ℓ +

1

2

∑
ℓ∈L

∫ ωN
ℓ

0

ϕℓ(s)ds. (10)

Note that the derivative of ϕℓ can be represented by ϕℓ itself,
i.e., ϕℓ(ω) =

2cℓ
α ϕ′

ℓ(ω)−m. Plugging it into (10),

1

2

∑
ℓ∈L

∫ ωN
ℓ

0

ϕℓ(s)ds =
1

α

∑
ℓ∈L

cℓϕ(ω
N
ℓ )− m

2

∑
ℓ∈L

ωN
ℓ . (11)

Adding equations (10) and (11), we have αALG ≥∑
ℓ∈L cℓϕ(ω

N
ℓ ).

Lemma 3 The offline optimal objective value is upper
bounded by the final dual prices as follows:

OPT ≤ ALG +
∑
ℓ∈L

cℓϕℓ(ω
N
ℓ ). (12)

Proof: Denote the offline optimal decision for the ith
arrival as y∗i and the set of arrivals to which the offline optimal
allocates more than OAVFϕ, i.e., yi < y∗i as N 1.

OPT =
∑
i∈N

gi(y
∗
i )

=
∑
i∈N

(gi(y
∗
i )− gi(yi)) +

∑
i∈N

gi(yi)

≤
∑
i∈N 1

(gi(y
∗
i )− gi(yi)) +

∑
i∈N

gi(yi). (13)

Now it remains to bound the first term, the difference between
the offline optimal algorithm and the online algorithm for N 1.
We make the following claim:
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Claim 1 The arrivals in N 1 have g′i(yi) ≤
∑

ℓ∈Li
ϕℓ(ω

N
ℓ ).

Proof: For arrivals in N 1, we have yi ∈ [0, bi), because
when yi = bi, y∗i ≤ yi, violating the definition of N 1. If yi =
0, according to the decision rule (4) and the concave property
in Assumption (1), we have

∑
ℓ∈Li

ϕℓ(ω
i−1
ℓ ) ≥ g′i(0), thus,

g′i(yi) ≤
∑

ℓ∈Li
ϕℓ(ω

N
ℓ ) holds when yi = 0. For yi ∈ (0, bi),

by (4), the following holds:

g′i(yi) =
∑
ℓ∈Li

ϕℓ(ω
i
ℓ) ≤

∑
ℓ∈Li

ϕℓ(ω
N
ℓ ).

Thus, we have shown that for arrivals in N 1, g′i(yi) ≤∑
ℓ∈Li

ϕℓ(ω
N
ℓ ) holds.

Based on Claim 1, we can proceed to bound the offline optimal
return, following (13).∑

i∈N 1

(gi(y
∗
i )− gi(yi)) ≤

∑
i∈N 1

g′i(yi)(y
∗
i − yi)

≤
∑
i∈N 1

∑
ℓ∈Li

ϕℓ(ω
N
ℓ )(y∗i − yi)

=
∑
ℓ∈L

ϕℓ(ω
N
ℓ )

∑
i∈N 1:ℓ∈Li

(y∗i − yi)

≤
∑
ℓ∈L

cℓϕℓ(ω
N
ℓ ), (14)

where the last inequality is due to the fact that the offline
optimal algorithm will not violate the capacity constraints, i.e.,
for any ℓ,

∑
i:ℓ∈Li

y∗i ≤ cℓ. Thus, by combining (13) and (14),
we have OPT ≤

∑
i∈N gi(yi) +

∑
ℓ∈L cℓϕℓ(ω

N
ℓ ) = ALG +∑

ℓ∈L cℓϕℓ(ω
N
ℓ ).

To recap what we have, Lemma 1 ensures that the online
algorithm OAVFϕ produces a feasible solution, and then
combining Lemma 2 and Lemma 3 gives OPT ≤ (1+α)ALG,
which proves Theorem 1.

Now we show that the competitive ratio of our algorithm
matches the lower bound of the problem.

Lemma 4 There exists no online algorithm for the online
network utility maximization problem that can achieve a
competitive ratio smaller than Ω(log θL).

Proof: We first show that the classic one-way trading
problem and the online fractional packing problem are two
special cases of the ONUM problem. The ONUM problem
reduces to the one-way trading problem when (i) the objective
function is linear and its derivative is bounded in [m,M ] with
θ = M/m, (ii) there is only one resource (i.e., L = 1), and
(iii) there is no individual budget constraint bi = c,∀i, with c
being the resource capacity. The ONUM problem reduces to
the online fractional packing problem when (i) the objective
function is gi(yi) = yi and (ii) there is no individual budget
constraint bi = maxℓ cℓ,∀i. Existing works have shown that
the competitive ratios of the one-way trading problem and
the online fractional packing problem are lower bounded by
Ω(log θ) [26] and Ω(logL) (Lemma 3.2 of [17]), respectively.
Thus, the competitive ratio of the ONUM problem must be

lower bounded by

max{Ω(log θ),Ω(logL)} ≥ 1

2
Ω(log θ) +

1

2
Ω(logL)

= Ω(log θL).

IV. SIMULATION RESULTS

A. Simulation Settings
We use the network trace of the Abilene network collected

from December 8, 2003, to December 28, 2003 [31], which
contains the routing information and network topology but
not the time stamps, to demonstrate the performance of our
algorithm. Abilene network is the most widely used academic
network created by the Internet2 community. The data set
includes 11 backbone routers, 41 links and 121 source-
destination pairs. The network trace contains the traffic matrix
and the routing matrix. The traffic matrix given in the data
set is a real-valued matrix with dimension 2016× 121, where
the component on the ith column and the jth row represents
the traffic volume of the ith source-destination pair measured
in the jth 5-min slot. The routing matrix is a binary matrix
whose dimension is 121×41, where the ith row vector denotes
the routing path of the corresponding source-destination pair.
We know from the routing matrix that the maximum request
link set size L is 6. We remove the 11 self-pairs that do not
need routing decisions and use the remaining traffic matrix of
size 2016× 110 in the simulation.

(Link Set Arrival Type) Each arrival instance contains 300
arrivals. To generate the arrival order, we draw samples from
110 source-destination pairs in the following ways to represent
different types of the request link sets arrivals.

• Random Sample (RS). Samples are drawn uniformly from
the 110 source-destination pairs.

• Increasing Request Link Set (IRLS). The first half of the
instance is uniformly sampled from the set of source-
destination pairs that request less than or equal to 3 links
(half of the maximum request link set size), and the
second half of the instance is uniformly sampled from
the set of source-destination pairs that request more than
3 links.

• Decreasing Request Link Set (DRLS). Contrary to the
IRLS case, the first half requests more than 3 links and
the second half requests less than or equal to 3 links. The
sampling method inside each half is the same as for the
IRLS type.

Note that the three types above may not be a complete
characterization of any real-life arrival instance. The reason
for evaluating the performance under these three special cases
is that the RS type captures the possibility that every source-
destination pair is equally important. The IRLS type and
DRLS type are to test the influence of the resource request
type, or more specifically, the arrival sequence of the request
link set, on the algorithmic performance for ONUM, a multi-
resource online allocation problem. In particular, our interest
is to find out how to allocate capacity for a potential bottleneck
link. The routing information in the Abilene network data set
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shows that there exist links serving as the backbone links
and appearing in many routing paths, which supports our use
of this data set. Next, utility functions in an instance are
introduced.

(Utility Type) Utilities and rate limits are not included in the
data set. We first discuss the properties of the utility function.
From the perspective of the network operator, a utility function
gi(y) = Liy allows the number of links requested by each user
to be considered in the network utility. However, for individual
users who care more about their own throughput, a utility
function gi(y) = y is more realistic. To accommodate the
concerns of both the network operator and the individual users,
we allow g′i to be bounded in [1, Li] and propose three types
of utility as follows:

• Throughput-based. g′i = 1, capturing the user throughput.
• Unit-density. g′i = Li, representing the concern of the

network operator.
• Balanced. g′i ∈ [1, L], which generalizes the aforemen-

tioned two types.
All three types will be investigated in simulations. Following
the convention in NUM, the utility functions of the bal-
anced type are gi(y) = ai log(1 + y), noting the decreasing
marginal utility property for many real-life utility functions.
The throughput-based and unit-density types consider utility
functions gi(y) = y and gi(y) = Liy, respectively. Note that
the balanced type is the only type whose utility functions
contain a random variable, ai, which is constructed as follows:

1) Uniform Case. In this case, the sequences of ai in an
instance are uniformly distributed within [1, L].

2) Robust Case. This case is to evaluate the robustness of
online algorithms. The first half of the ai,s in an instance
are uniformly distributed within [1, (L + 1)/2], and the
second half is uniformly distributed within [(L+1)/2, L].

We assume that the rate limits of arrivals bi = C/k, where C
is the capacity of the links and k is set to be 20. We use the
uniform capacity case to illustrate and set C = 1.

(Performance Metric) Given any arrival instance I, we
define the empirical ratio by

ER(I) = OPT(I)
ALG(I)

,

where OPT(I) is the offline optimal value and ALG(I) is the
return of the online algorithm for I, respectively. We use the
Matlab API of the Sedumi solver to solve the offline optimal
value. For each meaningful combination of the link set arrival
type and the utility type, we run 1000 instances, generate
the cumulative distribution function (CDF) of the empirical
ratio for a given algorithm and compare their performance.
Specifically, for the balanced utility type, we further divide the
results into the uniform case and the robust case, as mentioned
before.

(Benchmarks) We compare our proposed algorithm with
two benchmarks, which we introduce as follows:

• Primal-dual. This benchmark has been shown to be
optimal for the throughput-based utility in [29], where
gi(y) = y. For the throughput-based utility type, we
expect our algorithm to achieve performance at the same

level as the primal-dual algorithm, if possible, and to beat
it for the other two utility types. We use primal-dual to
denote this algorithm in the simulations.

• Posted-pricing. To show that our design of the threshold
function is vital to the algorithmic performance, we
use in Algorithm 1 the threshold function defined in
Equation (6). This threshold function is shown to be
optimal for the single-resource online allocation problem
in the discrete decision case [25]. We use posted-pricing
to denote the algorithm with the above threshold function
in the simulations.

In the following, we assess the performance under the
combination of the Abilene network topology and the syn-
thetic arrival instances described above. Then we validate our
theoretical results, showing the performance of our proposed
algorithm in the worst case.

B. Results

1) Simulations over the Abilene network: The results pre-
sented here are obtained based on simulations over the Abilene
network topology and the routing information provided in the
Abilene data set. We compare the algorithmic performance for
all three types of utility: throughput-based, unit-density and
balanced. Note that both our algorithm and the posted-pricing
algorithm require knowledge of the lower and upper bounds
of g′, and we assume they are true in this section and the
next. In Section IV-C, we will show that the lower and upper
bounds can be learned adaptively.

Figure 2 shows the CDFs of the empirical ratio for the
throughput-based utility. For this utility, if the early arrivals
have larger request link sets, i.e., they are the DRLS type, any
online algorithm should perform worse than in the case that
the request link set size is growing and the other variables are
kept the same. Because the throughput-based utility does not
reward the user by the number of links she/he requests, the
early arrivals with larger request link sets will not be beneficial
enough since she/he uses more resource to return the same
utility. This is validated by the simulation results shown in
Figure 2, where the range of the x axis is larger in Figure 2c
than in Figure 2b. The primal-dual algorithm is proven to be
order-optimal for the throughput-based utility, and thus our
algorithm is also optimal. Actually, the RS type can be viewed
as a combination of the IRLS and DRLS types, which explains
that the performance of each algorithm for the RS type lies
between that for the IRLS and DRLS types.

Figure 3 shows the CDFs of the empirical ratio of different
algorithms for the unit-density utility and the IRLS link set
arrival type. Contrary to the result for the throughput-based
utility, the IRLS case is the most difficult to deal with for
this utility, because for a potential bottleneck link, the arrivals
requesting it, but also other links, will return a higher utility
value than those requesting only it and no other links when
the allocation amount is the same. This requires an algorithm
to reserve enough of the capacity of any potential bottleneck
link for the future arrivals with a larger link request set.
The unit-density utility is amenable to greedy algorithms,
since any algorithm will return exactly the same amount
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Fig. 2: CDFs of the empirical ratio of algorithms for the throughput-based utility. The topology and the routing information
are from the Abilene network data set. The three subfigures show the performance under different link set arrival types.
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Fig. 3: CDFs of the empirical ratio of algorithms for the unit-
density utility and the IRLS link set arrival type.

of utility as the total link capacity it consumes. Thus, we
show only the performance of the most difficult link set
arrival type, the IRLS type, for the unit-density utility. The
primal-dual algorithm performs the worst for the unit-density
utility, because it is designed for the throughput-based utility
and cannot differentiate users requesting different numbers of
links, which just misses meeting the essential requirement that
we discussed before.

Note that the posted pricing algorithm behaves like a greedy
algorithm for this case, because both m and M equal 1 for
the unit-density case. This explains the step effect in Figure 3,
because the rate limits are fixed to 1/20 of the link capacity,
and a greedy algorithm will allocate all the remaining capacity,
if needed, to fulfill the request. The advantage of our algorithm
over the posted-pricing algorithm is due to the setting of the
threshold function at the capacity, i.e., ϕℓ(cℓ). It sets the value
to be M , while we set the value to be LM . A higher ϕℓ(cℓ)
means more conservative behavior, allocating less to the earlier
arrivals and reserving more for the future arrivals, which is
especially useful for the IRLS case with the unit-density utility
type.

Next, we show the performance under the balanced utility

type. For this type, the utility coefficients ai have two possible
settings, the uniform and the robust. Figure 4 and Figure 5
show the distribution of the empirical competitive ratio under
the uniform and the robust utility, respectively. We see from
these figures that our proposed algorithm achieves the smallest
empirical ratio for all combinations of link set arrival types
and utility cases when the utility is of the balanced type.
This shows that our algorithm can be applied to more general
scenarios.

When comparing Figure 4 and Figure 5, it is obvious that
the robust utility case is more difficult since all algorithms
return larger empirical ratios. Notice that the performance of
the primal-dual algorithm is quite stable over the link set
arrival types, both in Figure 4 and Figure 5, which again
corroborates our understanding that the design of the primal-
dual algorithm relies on the throughput-based utility and does
not consider the effect of the link set arrivals.

In sharp contrast, the performance of the posted-pricing
algorithm varies significantly when the link set arrival type
changes. The reason is that the designed threshold function
is directly borrowed from the single-resource case and cannot
take the possibly different link set size into consideration. The
posted-pricing algorithm makes the allocation decision as if
different links are of the same importance. However, the reality
is that some links are more popular than others and require
more conservative allocation, like our algorithm provides. We
think this is the key to designing a successful online algorithm
for the multiple-resource online allocation problem.

2) Simulations on the worst-case input: We validate our
theoretical results in this section. The worst-case instance of
our algorithm is constructed following the worst-case input in
the lower bound proof in [29]: Consider a line network with
L links of capacity 1, and the links are indexed by ℓ. L is
chosen such that log(L) is an integer. For all arrivals, the rate
limits are uniformly 1, equal to the capacity. The first group
of arrivals contains only 1 user, who requests all L links; the
second group of arrivals consists of two users, the first of
whom requests the first half of the links and the second the
remaining half; and the ith group of arrivals contains 2i−1

users, indexed by j ∈ [0, 2i−1 − 1]. The utility is throughput-
based, i.e., gi(y) = y. The difficulty of this arrival instance
is that the request link set size decreases by a factor of two
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Fig. 4: CDFs of the empirical ratio under the balanced utility case. The utilities of the instances are drawn from the uniform
case. The three subfigures show the performance under different arrival instances.
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Fig. 5: CDFs of the empirical ratio under the balanced utility case. The utilities of the instances are drawn from the robust
case. The three subfigures show the performance under different arrival instances.
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Fig. 6: Performance of all algorithms under the worst-case
input specified in the lower bound proof of the problem.

for subsequent groups, so the capacity consumed in a group
to gain a unit of utility also decreases by a factor of two.

For this arrival instance, it has been proven that no algorithm
will achieve a competitive ratio better than the order of
Ω(logL), and the primal-dual algorithm is shown to be order
optimal for this arrival instance. The performance of the three

algorithms considered is shown in Fig. 6. We observe that our
algorithm returns a higher utility (a smaller empirical ratio)
than both the primal-dual algorithm and the posted-pricing
algorithm, while all of them exhibit logarithmic behavior.
Therefore, it achieves the order optimality for this worst-case
instance, and is better than the two existing state-of-the-art
algorithms in the worst case.

C. Adaptive Implementation
Note that the results presented up to this point are based on

the knowledge of the lower and upper bounds, but there are
many possible approaches to overcome this limitation. One
way is to get estimates based on the past history and use them
in the algorithm. However, sometimes such history will be
inaccessible to a system operator. In this section, we present
one viable approach to overcome this limitation. We show
that without prior information of the bounds, we can still get
good performance by applying online learning techniques and
learning the bounds along the way.

In this subsection, we view the lower and upper bounds
as changeable algorithmic parameters, and thus denote them
as (m̃, M̃) to differentiate them from those in the previous
algorithms. How to intelligently choose the parameters? One
way is to model the algorithmic learning process as a multi-
armed bandit problem and treat different (m̃, M̃) as potential
actions. The expected reward of action (m̃, M̃) is the utility
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Algorithm 2 Online Adaptive Implementation of Algorithm 1

1: Initialize: Initial weights w(m̃,M̃) = w0, for ∀(m̃, M̃) ∈
A. Initial probability of choosing arm (m̃, M̃) is p(m̃,M̃) =
w0/(

∑
(m̃,M̃) w0) = 1/|A|. Stepsize parameter η.

2: for episode i = 1, . . . , N do
3: Select the arm (m̂i, M̂i) according to the probability

distribution p.
4: Run Algorithm 1 in parallel for all (m̃, M̃) ∈ A, with

parameter (m,M) = (m̃, M̃) to execute the arrivals in
episode i.
Obtain utility vector u = (u(m̃,M̃))(m̃,M̃)∈A.

5: Update the weight of arm (m̃, M̃),∀(m̃, M̃) ∈ A:

w(m̃,M̃) ← w(m̃,M̃) exp

(
ηu(m̃,M̃)

u∗

)
,

where u∗ = max(m̃,M̃)∈A u(m̃,M̃).
6: Update the probability of choosing arm

(m̃, M̃),∀(m̃, M̃) ∈ A:

p(m̃,M̃) ← w(m̃,M̃)/
∑

(m̄,M̄)∈A

w(m̄,M̄).

7: end for
8: Collect the total utility

∑N
i=1 u(m̂i,M̂i)

.

gained by choosing (m̃, M̃) as the parameters in the threshold
function ϕℓ(y) in one episode. The algorithm keeps a record
of a distribution over arms based on the utilities observed
from each arm, and then chooses an arm according to the
distribution. In our problem, full feedback (i.e., the knowledge
of the utilities of all arms in each step) is available when we
run the algorithms with different parameters in parallel. Thus,
we model the tuning process as an expert problem instead. We
adopt the classic Hedge algorithm [32] in online learning and
show the complete algorithm in Algorithm 2.

In Algorithm 2, we consider N episodes, each of which
consists of an instance with E arrivals. We set E = 100 and
N = 4000 in the simulation. The stepsize parameter η is set
by following the convention [32]. In our problem, the total
number of possible parameters is |A| = 400, and thus we

set η =
√

2 log |A|
N = 0.055 in the simulation. We investigate

the balanced utility type of arrivals, for which the sequences
of ais are generated from the truncated Gaussian distribution
with mean = 1+L

2 and variance = 1.
For a fair comparison, we also implement an adaptive

version of the posted-pricing algorithm. Fig. 7 compares the
average cumulative utility of the adaptive algorithm and the
algorithm with the best possible parameter selected offline. It
shows that the average utility converges as the learning process
moves forward and the proposed Algorithm 2 outperforms
the posted-pricing benchmark in this adaptive implementation.
Compared with the previous method of choosing the parameter
based on past traces, the online learning algorithm does not
need prior information on the input or past history, and thus
can be applied in a wider range of application scenarios.
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Fig. 7: Evolution of the average cumulative utility. Alg-opt
represents the algorithm with the best possible parameters and
Alg-learn is the algorithm with learned parameters, where
Alg is either the posted-pricing algorithm or the proposed
Algorithm 2.

V. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we consider the online network utility max-
imization problem and develop an algorithm that makes an
allocation based on the utilization level. We show that the
proposed algorithm achieves the optimal competitive ratio,
which is logarithmic in the number of links in a request.
Extensive simulations are conducted to show the empirical
performance advantages of the proposed algorithm, compared
with two state-of-the-art algorithms. For practical use, we
devise an adaptive implementation of the algorithm, employing
online learning techniques.

The ONUM problem shows a superior performance for the
bandwidth allocation problem. It is compelling to look for
other real-life applications that can be modeled by the ONUM.
For example, the problem in this paper does not explicitly
consider the fairness issue, which may be of interest, and
the problem considered in this paper is also under the full-
information setting, but it would be interesting to explore the
bandit setting. Moreover, a combination of ideas from online
learning and online algorithm design, such as utilizing the
learning to predict crucial information in online algorithms,
is also worth more attention.
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