
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1

Mobility and Energy Management in Electric
Vehicle Based Mobility-on-Demand

Systems: Models and Solutions
Liang Ni , Bo Sun , Member, IEEE, Xiaoqi Tan , and Danny H. K. Tsang , Life Fellow, IEEE

Abstract— An electric vehicle based mobility-on-demand
(EMoD) system provides shared transportation (e.g., car-
sharing or ride-sharing) to satisfy customers’ individual mobility
demands. It has been recognized as a vital alternative form
of transportation between public and private transportations in
future sustainable cities. Constrained by the long charging time
and limited driving range of EVs, an operator of an EMoD system
demands for decision-making models and algorithms to manage
the mobility and energy of EVs to best serve customers with least
costs. In this paper, we propose a stochastic dynamic program
(DP) to model three operational decisions of the EMoD system:
i) dispatching EVs to serve mobility demand from customers,
ii) repositioning EVs to accommodate the unbalanced mobility
demands between service regions, and iii) recharging EVs to
maintain their sufficient state-of-charge levels. To handle this
large-scale DP problem, we first observe and prove that it
has a coordinate-wise concave value function. Based on this
structural property, we propose to use a separable piecewise
linear function to approximate the value function and design
an approximation-based algorithm to efficiently derive the deci-
sion policy. Numerical tests show that our proposed algorithm
significantly outperforms the existing model-free approaches
(e.g., greedy heuristic and Q-learning) that fail to take into
account the structural properties of the DP problem.

Index Terms— Mobility-on-demand, sequential decision-
making, dynamic programming, perturbation analysis.

I. INTRODUCTION

THE world is undergoing a process of rapid urbanization.
It is estimated that more than two-thirds of the world’s

population will live in urban areas by 2050 [1]. However, such

Manuscript received 15 August 2020; revised 29 December 2021 and 21
July 2022; accepted 12 December 2022. This work was supported by the
Hong Kong Research Grant Council (RGC) General Research Fund through
“Mobility and Energy Management of Electric Vehicle-Based Mobility-on-
Demand Systems in Future Smart Cities” under Project 16202619. The
Associate Editor for this article was A. Bucchiarone. (Corresponding author:
Bo Sun.)

Liang Ni is with the Department of Electronic and Computer Engineering,
The Hong Kong University of Science and Technology, Clear Water Bay,
Kowloon, Hong Kong (e-mail: lniaa@connect.ust.hk).

Bo Sun is with the Department of Computer Science and Engi-
neering, The Chinese University of Hong Kong, Hong Kong (e-mail:
bsun@cse.cuhk.edu.hk).

Xiaoqi Tan is with the Department of Computing Science, University of
Alberta, Edmonton, AB T6G 2R3, Canada (e-mail: xiaoqi.tan@ualberta.ca).

Danny H. K. Tsang is with The Hong Kong University of Science and
Technology (Guangzhou), Nansha, Guangzhou, Guangdong 511400, China,
and also with the Department of Electronic and Computer Engineering,
The Hong Kong University of Science and Technology, Clear Water Bay,
Kowloon, Hong Kong (e-mail: eetsang@ust.hk).

Digital Object Identifier 10.1109/TITS.2022.3231435

urbanization creates enormous problems of environmental
pollution and decreases the general quality of life of urban
residents [2]. Driven by these environmental and societal chal-
lenges, urban mobility systems are experiencing a dramatic
transformation to become more sustainable and cost effective.
In conventional urban mobility systems, public transportation
cannot satisfy individual mobility services well, and thus
urban residents commonly choose to purchase private cars
for private transportation. However, private cars are typically
parked for more than 90% of the time, but contribute substan-
tially to environmental pollution and traffic congestion [3].
Recently, mobility-on-demand (MoD) systems have emerged
as a vital alternative for public and private transportations
by providing shared transportation tools (e.g., bikes, cars)
to satisfy customers’ individual mobility demands [4], [5].
For example, car-sharing (e.g., Zipcar) and ride-sharing (e.g.,
Uber) based MoD platforms have been proved to be successful
business models [6]. Moreover, since electric vehicles (EVs)
are more energy efficient and almost zero emission, they are
widely accepted as substitute to gasoline vehicles. With the
electrification of transportation, it is envisioned that an EV
based MoD (EMoD) system will become an inevitable trend
in future sustainable cities [7].

The core operational problem of the current MoD system is
how to dynamically reposition gasoline vehicles across service
regions to meet the mobility demand that varies in both time
and space [8], [9], [10]. However, due to the long charging
time and limited driving range of EVs, an EMoD system has
to address new problems deriving from the inevitable energy
management of EVs. First, an efficient recharging scheme
is necessary to maintain enough energy for EVs to provide
mobility services with guaranteed quality-of-service1 (QoS).
Second, a joint management of mobility and energy is needed
to reduce total recharging cost due to the temporal and spatial
difference in recharging opportunities (e.g., location- and time-
dependent electricity prices). Third, an EMoD system can offer
undifferentiated services to a mobility demand using any EV
with sufficient energy. However, EVs with different energy
levels may affect the recharging costs and the probability
of successfully satisfying future mobility demands. Thus, the

1QoS refers to the capability of a system to provide better services. For
instance, we can define the QoS of an EMoD system as the probability of
providing available mobility services upon requests.
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Fig. 1. An illustration of urban EMoD systems. A fleet of EVs are owned and
operated by the EMoD system operator. EVs with sufficiently high SoCs can
be dispatched to serve mobility demand or repositioned to other regions (green
arrow). After being dispatched or repositioned through travel links between
regions, EVs will travel for a certain time and consume a certain amount of
energy before arriving in the destination region. The EVs with insufficient
SoCs need to be recharged before traveling to other regions (red arrow).

operator of an EMoD system needs to decide which EV with
a particular state-of-charge (SoC) level should be dispatched
to serve which mobility demand.

The mobility and energy management of EMoD system
involves a complicated sequential decision-making process. To
address this problem, we aim to make three types of deci-
sions to maximize the overall revenue of the EMoD system:
i) dispatching EVs (i.e., deciding which of the available EVs)
to serve mobility demand with QoS guarantee, ii) repositioning
the EVs that are currently not serving customers among service
regions to accommodate the unbalanced mobility demand, and
iii) recharging EVs with low SoCs to ease the range-anxiety
issue. We illustrate the EMoD system and its operational
decisions in Fig. 1. To capture such sequential decision-
making process, we formulate a stochastic dynamic program
(DP) problem. However, it is computationally challenging to
derive an optimal policy in a practical-scale EMoD system,
faced with the non-stationary mobility demand and charger
availability (number of available chargers). To develop a com-
putationally tractable policy, we utilize approximate dynamic
programming (ADP) techniques [11], [12]. Based on the rig-
orously proved coordinate-wise concave property of the value
function in our DP formulation, we use a separable piecewise
linear function to approximate the value function, and design
an ADP-based algorithm to make decisions efficiently. Before
introducing the technical details of the EMoD system model
and the decision strategy, we present the related literature in
the following section.

A. Related Work

A rich literature on shared transportation has emerged in
recent years, where the mobility management problem in gaso-
line vehicle-based MoD systems is extensively investigated.
The common objective is to design a vehicle repositioning
strategy so that the total repositioning cost is minimized [8],
[9], [13], or the system revenue can be maximized [10]. Specif-
ically, [13] formulates the vehicle repositioning problem in a
vehicle sharing system into a stochastic DP. By dynamically

matching the vehicle supply to the travel demand, it can
achieve the minimal expected total repositioning cost.

Different from the gasoline vehicle-based MoD systems,
the EMoD system needs a joint management of mobility and
energy, which is less studied in the literature. The authors
of [14] and [15] investigate the optimal routing of EVs with in-
route charging to serve mobility demand in an EMoD system.
Based on the global information of charging station availability
and electricity prices, the total energy cost is minimized
in [14]. Leveraging the probabilistic information of customers’
arrivals, the overall trip time for customers is minimized
in [15]. In [16], a queuing model is introduced by assuming
the arrival processes of mobility demand and available EVs
as Poisson processes. Planning decisions on proportions of
vehicles to be charged or serve mobility demands are derived
under stability conditions, such that the total response time
of the system can be minimized. Reference [17] focuses
on making planning decisions on the size of EV fleet and
the number of charging facilities in a national scale EMoD
system, based on the estimation of daily customers’ demand.
A quadratic programming problem is formulated to minimize
the total system cost. In [18], a max-flow problem is solved to
predetermine a set of feasible trips given the available EVs at
each location in an EMoD system, where customers announce
their demands in a day-ahead manner. Although these results
are appropriate for planning problems of EMoD systems, the
applicability of real-time decisions, such as recharging and
repositioning facing uncertain mobility demand, needs further
investigation.

To capture the uncertain mobility demand, another stream
of works [19], [20], [21], [22] uses agent-based simulations to
evaluate the environmental and economic impacts of shared
autonomous EVs. However, there is still a lack of a model-
based mathematical framework to make operational decisions
for EMoD systems. The authors of [23] consider an online
charging scheduling problem of the autonomous EVs in an
EMoD system. To handle the uncertain daily sequence of
mobility demand, an online algorithm is designed to maximize
the system welfare, with a worst-case performance guarantee.
However, with the main focus on charging scheduling, vehicle
repositioning is neglected. To the best of our knowledge, our
paper is the first addressing the sequential decision-making
model on both mobility and energy management in an EMoD
system, which makes our problem more challenging and
differentiates our work from existing papers.

B. Our Contribution

Our main contributions are summarized as follows:
• We consider the joint mobility and energy management

problem in the EMoD system. Instead of making planning
decisions, we design a sequential decision-making model
to make real-time decisions in a practical-scale EMoD
system, with non-stationary mobility demand and charger
availability.

• We formulate the mobility and demand management
problem into a stochastic DP problem, which is computa-
tionally challenging to derive the optimal policy. Different
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TABLE I

PARAMETERS AND VARIABLES

from existing model-free methods (e.g., Q-learning),
we rigorously prove that the value function of the DP
problem is coordinate-wise concave. By leveraging such
structural property, we approximate the value function
as a separable piecewise linear function and design an
ADP-based algorithm to make near-optimal decisions
efficiently.

• We perform extensive numerical tests based on a
Hong Kong transportation system. Compared with heuris-
tic and model-free algorithms, our proposed algorithm
can achieve significant performance improvement and
meanwhile meet the time requirement for making real-
time decisions.

II. EMOD SYSTEM MODEL AND DP FORMULATION

In this section, we present the detailed EMoD system model
in Sec. II-A and the joint mobility and energy management
problem in Sec. II-B. In Table I, we summarize all parameters
and variables in our model.

A. EMoD System Model

We consider an EMoD system that owns and operates a
fleet of N EVs to provide on-demand mobility services in M
regions. Let M := {1, . . . , M} and L := {1, . . . , L} denote
the index sets of the service regions and (virtual) travel links
between regions, respectively. For any service region i ∈ M,
we denote the set of travel links originating from i by Li ⊂ L.
For any link � ∈ L, we denote its origin region by i �. Each

customer arrives and submits its mobility demand to travel
on a particular link � ∈ L. The EMoD operator will then
dispatch an EV with a certain SoC level in region i � to pick
up the customer and travel through link �. We focus on a
discrete-time stochastic system with a finite time horizon of
T periods. The operator’s decisions are made in discrete time
epochs t ∈ T := {1, . . . , T }, while demand from customers
can arrive any time between two epochs.

To serve customers’ mobility demand, we need to address
the following uncertainties in the EMoD system. First, cus-
tomers randomly arrive for mobility demand at different time
from varying locations. This uncertainty results in the temporal
and spatial imbalance of the supply and demand of the EVs.
Second, EVs in the EMoD system need to share chargers
with other EVs in public charging facilities. Thus, the number
of available chargers at different time and locations is also
uncertain. We model the mobility demand and the number
of available chargers as random variables, which will be
explained in detail in Sec. II-B. Also note that the traveling
time and energy consumption of EVs on different links depend
on time-varying traffic conditions. More congested traffic
condition usually leads to longer traveling time and more
energy consumption. The uncertainties of traffic conditions
are not directly introduced in the system model but we will
show how to incorporate this uncertainty in the numerical
tests. For detailed numerical settings, please refer to Sec. IV.
We would like to point out that, in this paper, we aim to
propose a general model and its general solution to capture
as many characteristics of the real system as possible. In a
more specific case that a fixed number of available chargers
are reserved particularly for EMoD systems, and the time and
energy consumption on each link are given, our model and
algorithm derived in this paper can handle it in a simpler way
(with fewer system states in the model, Algorithm 1 introduced
later in Sec. III-D can be executed with lower computational
burden).

B. Problem Formulation

In order to deal with the uncertain mobility demand and
charger availability in the EMoD system, we make sequential
decisions, including repositioning, recharging and dispatching,
with the purpose of maximizing the overall system revenue
of T time periods. To further capture the impact of current
decisions on the future, the sequential decision-making process
is formulated into a finite time horizon stochastic DP.

1) State Space: The state of the EMoD system can be
categorized into information state and physical state.

Suppose an operator owns a group of homogeneous EVs,
each of which needs K periods to be fully charged. By setting
the (normalized) delivered energy of charging an EV for one
time slot as an SoC level, we can denote the set of EVs’ SoC
levels by K := {0, . . . , K }. Let ξ�

t and ζ i
t denote the mobility

demand on travel link � that arrives during (t − 1, t) and
the number of available chargers in region i at time epoch t ,
respectively. At time epoch t , the system operator can observe
both ξ t := {ξ�

t |� ∈ L} and ζ t := {ζ i
t |i ∈ M}. We define the

information state of the EMoD system as (ξ t , ζ t ) and denote
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its feasible space by It . As mentioned in Sec. II-A, ξ�
t and

ζ i
t , t ∈ T are regarded as random variables to generalize our

system settings, which are realized at the beginning of each
time period t . In more specific settings where a fixed number
of chargers is reserved particularly for the EMoD system,
the number of available chargers ζ i

t can be considered as a
constant in each period since the charging decisions for all
EVs with different SoCs are made in every time period. The
charging decision will be further explained in the following
paragraphs.

In addition to the information state, the system opera-
tor can also observe the physical distribution of EVs in
all regions vt := (v1,0

t , . . . , v i,k
t , v i,k+1

t , . . . , vM,K
t ), where

v i,k
t , i ∈ M, k ∈ K represents the number of EVs with SoC

k in region i at time epoch t . Moreover, the number of in-
transit EVs, ut := (u1,0

t , . . . , u�,k
t , u�,k+1

t , . . . , uL ,K
t ), can be

observed, where u�,k
t , � ∈ L, k ∈ K is the number of EVs

starting to travel at time epoch t on link � with original
SoC k. Let u1:t−1 := (u1, . . . , ut−1) denote the concatenated
historical records up to time period t−1. The state space of the
physical state (vt , u1:t−1) in time period t is denoted by Pt ,
which has a dimension of M ×(K +1)+ L ×(K +1)×(t −1)
based on the above definitions. Pt is constrained by the total
number of EVs in the system:

∑
i∈M

∑
k∈K

v i,k
t +

∑
�∈L

∑
k∈K�

t−1∑
ι=t−τ �+1

u�,k
ι = N, v i,k

t , u�,k
ι ∈ N.

(1)

We denote the subset of SoC levels, which are sufficient to
travel on link �, by K� = {k|k ≥ k�, k ∈ K}. Additionally,
k� and τ � represent the energy consumption (SoC levels) and
traveling time on link �, respectively. Note that these values are
generally stochastic and non-stationary, depending on traffic
conditions. N is used to represent the natural number set.
The second term of (1) on the left-hand side indicates the
total number of in-transit EVs at time epoch t . Particularly,∑t−1

ι=t−τ �+1 u�,k
ι is the total number of in-transit EVs that are

traveling on link �. Only the EVs that start to arrive after
t − τ � + 1 are counted since those earlier ones have already
gone through the link. Thus, we can define the system state
of EMoD system in time period t (before making operational
decisions) as st = {vt , u1:t−1, ξ t , ζ t }, with the state space
St = Pt × It .

2) Action Space: After observing both the information and
physical states, the system operator can make the following
decisions: i) Reposition EVs between different service regions.
We denote the repositioning decision by xt = {x�,k

t |� ∈ L, k ∈
K}, where x�,k

t represents the number of EVs in region i �

with SoC level k that are repositioned through link � at time
epoch t . ii) Recharge EVs at available chargers. We denote
the recharging decision by yt = {yi,k

t |i ∈ M, k ∈ K}, where
yi,k

t is the number of EVs with SoC level k that start to be
charged at time epoch t in region i . iii) Dispatch EVs to serve
mobility demand ξ t . We denote the dispatching decision by
zt = {z�,k

t |� ∈ L, k ∈ K}, where z�,k
t represents the number of

EVs in region i � with SoC k that are dispatched through link �
to serve demand ξ�

t . We denote the overall action of the system

Fig. 2. An illustration of event sequence between time epochs t − 1 and t .
Right after time epoch t − 1, the operator observes the system state in time
period t −1 and makes operational decisions. Customers’ arriving at any time
between epoch t − 1 and t contributes to the mobility demand in time period
t . Right before time epoch t , some of the repositioned and dispatched EVs
arrive at their destination region, and meanwhile, EVs under recharging finish
their charging for one time period. Thus, the system state in time period t is
realized, and the operator makes decisions in time period t .

operator by at = {xt , yt , zt } ∈ At (st ), where At (st ) is the
action space given state st ∈ St . Particularly, At (st ), t ∈ T ,
is characterized by the following constraints:∑

�∈Li

(x�,k
t + z�,k

t ) + yi,k
t ≤ v i,k

t , ∀i ∈ M, k ∈ K, (2)

z�,k
t = 0, x�,k

t = 0, ∀k ∈ K \ K� (3)∑
k∈K

yi,k
t ≤ ζ i

t , yi,K
t = 0, yi,k

t ∈ N, ∀i ∈ M, k ∈ K, (4)

∑
k∈K�

z�,k
t ≤ ξ�

t , z�,k
t ∈ N, ∀� ∈ L, k ∈ K�. (5)

Constraint (2) is the resource limit constraint, which shows
that the total number of EVs to be dispatched, repositioned
and recharged cannot exceed the number of available EVs v i,k

t .
In constraint (3), the dispatching decision z�,k

t and reposition-
ing decision x�,k

t are forced to be zero when the SoC level k
is insufficient to support the travel on link �. Constraint (4)
further restricts the number of EVs recharged in region i by
the number of available chargers ζ i

t . Constraint (5) ensures the
total number of EVs dispatched through link � is no more than
the mobility demand ξ�

t . We depict the sequence of events in
Fig. 2.

3) Transition Function: The state transition functions for
the physical state from time epoch t to t +1 can be determined
as follows:

v i,k
t+1 = v i,k

t + (yi,k−1
t − yi,k

t )

+
∑
�∈Li

u�,k+k�

t−τ �+1
−

∑
�∈Li

(x�,k
t + z�,k

t ), ∀k ∈ K, (6)

u�,k
t = x�,k

t + z�,k
t , ∀� ∈ L, k ∈ K�. (7)

Equation (6) describes the dynamics of the number of EVs
with SoC k in region i from time epoch t to t +1. Particularly,
yi,k−1

t EVs are charged from SoC level k − 1 to k, and yi,k
t

EVs are charged from SoC level k to k +1 at time epoch t +1.
In other words, the number of EVs with SoC k is increased
by yi,k−1

t , and meanwhile, decreased by yi,k
t . Thus, the second

term yi,k−1
t − yi,k

t is the net increment of EVs in region i
with SoC k due to recharging decisions. We denote the set
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of links with a destination i by Li , such that
∑

�∈Li
u�,k+k�

t−τ �+1
quantifies the number of in-transit EVs starting to travel at
time epoch t − τ � + 1 on link � with an original SoC level
k + k�. By consuming k� SoC levels of energy and traveling
time τ �, these EVs will arrive in region i at time epoch t + 1
with a remaining SoC k. The last term of (6),

∑
�∈Li (x�,k

t +
z�,k

t ), is the number of EVs with SoC k leaving region i at
time epoch t , due to repositioning and dispatching decisions.
Equation (7) captures that the number of EVs starting to travel
at time epoch t with SoC k on link � equals the number of
EVs with SoC k repositioned and dispatched on link �.

4) Value Function: We formulate a finite horizon stochastic
DP problem to maximize the total revenue of the EMoD
system within T time periods. We first define the single-step
system revenue Rt (st , at ) in time period t as,

Rt (st , at ) =
∑
�∈L

∑
k∈K�

r�
t z�,k

t −
∑
�∈L

η�
t

[
ξ�

t −
∑

k∈K�

z�,k
t

]
−

∑
�∈L

∑
k∈K�

γ �
t x�,k

t −
∑
i∈M

∑
k∈K

λi
t yi,k

t , (8)

which is the revenue earned by adopting action at given
system state st . Here r�

t and η�
t are the reward and penalty for

serving or losing one customer on link � in time period t . γ �
t is

the cost for the per-EV repositioning on link �, and λi
t denotes

the per-EV recharging cost for one SoC level in region i . The
single-step revenue (8) is computed by using the total revenue
earned by serving the mobility demand through dispatching
minus the penalty (i.e., the second term) for unserved demand,
repositioning cost (i.e., the third term) and recharging cost (i.e.,
the fourth term).

Let Vt (st ) denote the value function (or the profit-to-go
function), which is the maximal expected revenue from time
period t to the terminal period T . For any time period t ∈ T ,
the revenue-maximizing problem of the EMoD system can be
formulated as a finite horizon stochastic DP as follows:

Vt (st ) = max
at ∈At (st )

Rt (st , at ) + E[Vt+1(st+1)]. (9)

The physical state (vt+1, u1:t ) at time epoch t + 1 can be
obtained from (st , at ) based on (6) and (7). The infor-
mation state (ξ t+1, ζ t+1) is independent of the physical
state (vt+1, u1:t ) and action at+1, which can be regarded
as external information. The second term on the right-hand
side of (9) indicates the expected total revenue starting
from period t + 1 to T . With the probability of draw-
ing (ξ t+1, ζ t+1) from It+1 as P(ξ t+1, ζ t+1), we can have
E[Vt+1(st+1)] = ∑

(ξ t+1,ζ t+1)∈It+1
P(ξ t+1, ζ t+1)Vt+1(st+1).

However, solving (9) is highly nontrivial, due to the famous
curse-of-dimensionality in DP [12]. The difficulties mainly
come from two aspects: i) Given the system state st , we need
to solve an integer program to determine the optimal actions,
which generally has high computational complexity, espe-
cially for large-scale systems. ii) Worse still, due to uncer-
tain mobility demand and charger availability, problem (9)
results in non-stationary decision policies, which requires us to
repeatedly solve the computationally difficult problem for each
possible state in each time period. Therefore, it is intractable

to implement the standard backward induction method2 in
our problem. To tackle this challenging problem, we analyze
the structural property of (9) and design an approximation
algorithm to efficiently make operational decisions in the next
section.

III. ADP-BASED SOLUTION METHODOLOGY

In this section, we propose an ADP-based algorithm to solve
the DP problem (9). We first analyze the structural properties
of this DP problem in Sec. III-A. Leveraging such properties,
we design a piecewise linear function to approximate the value
function in Sec. III-B. We then perform perturbation analysis
to iteratively update the approximate function in Sec. III-C and
present the complete algorithm for solving the DP problem of
the EMoD system in Sec. III-D.

A. Structural Properties of Value Function

To approximate the value function Vt (st ), we first demon-
strate the structural properties of Vt (st ) over the physical space
(vt , u1:t−1) by the following Theorem 1. The information state
(ξ t , ζ t ) is captured as external information by our approximate
value function in next subsection.

Theorem 1: The value function Vt (st ),∀t ∈ T is
coordinate-wise concave in (vt , u1:t−1), where a coordinate
is referred to as one entry (e.g., v i,k

t or u�,k
ι , i ∈ M, k ∈

K, � ∈ L, ι ∈ [1, t − 1]) of the vector (vt , u1:t−1).
The proof of Theorem 1 makes use of the knowledge of

convex optimization [24] and adopts an induction method.
Note that we claim a discrete function is concave in one
coordinate if its first-order difference is non-increasing in this
coordinate.

Proof: To simplify the notation, we define the physical
state as pt := (vt , u1:t−1) and the system state as st :=
( pt , ξ t , ζ t ). Given (ξ t , ζ t ), we first analyze the continuous
extension Ṽt ( pt , ξ t , ζ t ) of the value function Vt ( pt , ξ t , ζ t ).
If we can prove that Ṽt ( pt , ξ t , ζ t ) is concave in pt , then
Vt ( pt , ξ t , ζ t ) is coordinate-wise concave in pt , since the first-
order difference of Vt ( pt , ξ t , ζ t ) can be easily checked to be
non-increasing in each coordinate of pt . To show the concavity
of Ṽt ( pt , ξ t , ζ t ), we use induction:

(i) First we consider the base case for the terminal time
period T . We define a continuous extension R̃t ( pt , ξ t , ζ t , at )
of the single-step revenue Rt ( pt , ξ t , ζ t , at ), t ∈ T . With
(ξ t , ζ t ) as external parameters, the value of R̃t ( pt , ξ t , ζ t , at )
is determined by ( pt , at ), thus treated as a function of ( pt , at ).
From (8), we can easily prove that R̃t ( pt , ξ t , ζ t , at ) is concave
in ( pt , at ). By setting ṼT +1 = 0 and VT +1 = 0, we have

ṼT ( pT , ξT , ζ T ) = max
aT ∈ÃT ( pT )

R̃T ( pT , ξT , ζ T , aT ). (10)

Then the following Lemma 1 holds:
Lemma 1: ṼT ( pT , ξT , ζ T ) is concave in pT , where the

feasible action space of pT , ÃT ( pT ), is a polyhedron.

2The backward induction method is implemented by enumerating all possi-
ble outcomes from the current time to the end and then choosing the optimal
path as the solution.
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Proof: We have proved that R̃T is concave in ( pT , aT ).
With a convex action domain ÃT ( pt ), ṼT ( pT , ξT , ζ T ) can be
proved concave in pT based on Chapter 3.2.5 in [24]. �

(ii) Next, we implement induction steps by assuming
Ṽt+1( pt+1, ξ t+1, ζ t+1) is concave over pt+1. We observe
that the physical state pt+1 can be obtained from an affine
mapping pt+1 = f ( pt , ξ t , ζ t , at ) based on (6) and (7).
Ṽt+1( f ( pt , ξ t , ζ t , at ), ξ t+1, ζ t+1) can be proved concave in
pt , since the second-order derivatives of f ( pt , ξ t , ζ t , at ) and
Ṽt+1( f ( pt , ξ t , ζ t , at ), ξ t+1, ζ t+1) to pt are zero and negative,
respectively. We define a Q-function of a state-action pair as

Qt ( pt , ξ t , ζ t , at ) = R̃t ( pt , ξ t , ζ t , at )

+ E[Ṽt+1( pt+1, ξ t+1, ζ t+1)],
∀at ∈ Ãt ( pt ), ∀st ∈ S.

Since taking expectation over (ξ t+1, ζ t+1) preserves the con-
cavity of Ṽt+1( pt+1, ξ t+1, ζ t+1) in pt , Qt ( pt , ξ t , ζ t , at ) can
be proved concave in ( pt , at ). Following the same argument in
the proof of Lemma 1, we can show Ṽt ( pt , ξ t , ζ t ) is concave
in pt ,

Ṽt ( pt , ξ t , ζ t ) = max
at∈Ãt ( pt )

Qt ( pt , ξ t , ζ t , at ). (11)

Consequently, the integral value function Vt ( pt , ξ t , ζ t ) can be
proved coordinate-wise concave in pt , which concludes the
proof of Theorem 1. �

B. Separable PieceWise Linear Approximation

Based on the coordinate-wise concavity shown in
Theorem 1 and the fact that our DP formulation has integer
solutions, we approximate the value function (9) by a separable
piecewise linear function.

In previous discussion, we only prove that the value
function is coordinate-wise concave in the physical state.
However, we also want to incorporate the information state
in our approximate value function. By randomly sampling
the information state (ξ t , ζ t ) from It , we can categorize
different values of (ξ t , ζ t ) into different information intervals.
We denote the index set of information interval by C :=
{1, . . . , C}. The number of intervals C can be easily tuned by
adjusting different ranges of demand and number of chargers.
After that, we can design the approximate value function on
different information intervals to capture both physical state
and information state.

For notational convenience, we present the physical state pt
by listing each of its coordinates. In this way, we have pt :=
(p1

t , . . . , pD
t ), where D is the dimension of pt . To coincide

with our definition of pt := (vt , u1:t−1) in Sec. II-A, the
dimension is calculated by D = M × (K + 1) + L ×
(K + 1) × (t − 1). We denote the coordinate index set by
D := {1, . . . , D}, and pd

t , d ∈ D, is an integer value referring
to the number of EVs shown in the d-th coordinate of pt .
For example, the 1-st coordinate of pt (i.e., p1

t ) represents the
value of v1,0

t , which is the number of EVs in region 1 with
SoC level 0.

For each information interval c ∈ C and coordinate of the
value function d ∈ D, we define a piecewise linear function

gc
d,t(pd

t ) to approximate the system benefit of holding pd
t EVs.

Specifically, the value of gc
d,t(pd

t ) is determined by a vector

of slopes θ c
d,t := {θ c

d,t( j)| j ∈ J := {1, 2 . . . , N}}, where
θ c

d,t( j) is the slope of the j -th segment of gc
d,t(·). To maintain

the coordinate-wise concavity of the value function, θ c
d,t( j)

should be non-increasing over j ∈ J .
If we set the horizontal segment length of gc

d,t(·) as 1, θc
d,t

can be represented by θ c
d,t := (θ c

d,t(1), θ c
d,t(2), . . . , θ c

d,t (N)),
and we have

gc
d,t(pd

t ) =
pd

t∑
j=1

θ c
d,t( j), (12)

which is the sum of slopes up to the value pd
t . For a total

of D piecewise linear functions of state pt , the approximate
value function is given by

V̂t ( pt , θ
c
t ) =

D∑
d=1

gc
d,t(pd

t ) =
D∑

d=1

pd
t∑

j=1

θ c
d,t( j), (13)

where θc
t := {θc

d,t |d ∈ D}, and the information state (ξ t , ζ t )
falls in the c-th interval. Note that the value function can also
be approximated as other forms of piecewise linear functions
by setting the segment length of gc

d,t(·) to different values.
Next, we proceed to show how to iteratively update the

slope θ c
t in V̂t ( pt , θ

c
t ) based on perturbation analysis.

C. Perturbation Analysis

Using (13) to approximate the value function, we need
to estimate a large number of parameters, which is highly
non-trivial.

Recall that the parameters in (13) are the slope θ c
t of

a piecewise linear function, which indicates the incremental
value of having one additional EV. Thus, we propose a
value function approximation algorithm based on perturbation
analysis [25], [26] and update θ c

t iteratively.
In each iteration, we first replace the value function

Vt+1(st+1) in (9) by V̂t+1( pt+1, θ
b
t+1), which is our current

approximation of Vt+1(st+1) obtained in the last iteration.
Here b is the information index in time period t + 1. Specif-
ically, we solve (14) to get the objective value V̄t (st ) as an
estimate of Vt (st ),

V̄t (st ) = max
at ∈At (st )

Rt (st , at ) + E[V̂t+1(st+1, θ
b
t+1)]

= max
at ∈At (st )

Rt (st , at ) + 1

H

H∑
h=1

D∑
d=1

pd
t+1∑

j=1

θ
bh
d,t+1( j),

(14)

where the expectation is calculated by randomly sampling
(ξ t+1, ζ t+1) ∈ It+1 for H times, and bh is the information
interval index obtained in the h-th sampling. The hidden
information for state st is the information index c.

In order to solve (14), we equivalently transform (14) into
the following LP problem:

max
at ∈At ,qd

j

Rt (st , at ) + 1

H

H∑
h=1

D∑
d=1

N∑
j=1

θ
bh
d,t+1( j) · qd

j ,

(15a)
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s.t. qd
j ∈ {0, 1}, ∀d ∈ D, j ∈ J , (15b)
N∑

j=1

qd
j = pd

t+1, ∀d ∈ D, (15c)

constraints : (6), (7)

where qd
j is the newly introduced binary variable and indicates

if the j -th slope should be counted into the objective (15a).
In constraint (15c), given (st , at ), pd

t+1 is derived from the
state transition equations of (6) and (7). Note that qd

j solely
depends on the physical state pd

t+1, d ∈ D, and thus qd
j is the

same for any information interval index b, as long as (st , at )
is given.

To show the equivalence between (14) and (15), we present
the following Lemma 2.

Lemma 2: For any state st , the optimal solution qd∗
j of (15)

is

qd∗
j =

{
1, j ∈ {1, . . . , pd

t+1},
0, otherwise,

such that
∑N

j=1 θ
bh
d,t+1( j) · qd∗

j = ∑pd
t+1

j=1 θ
bh
d,t+1( j).

Proof: Suppose the optimal solution has one qd∗
j1

= 1 for
j1 ∈ J \ {1, . . . , pd

t+1}. To satisfy constraint (15c), there is
at least one qd∗

j2
= 0 for j2 ∈ {1, . . . , pd

t+1}. Given (st , at ),
we can always improve the objective (15a) by setting qd∗

j1
= 0

and qd∗
j2

= 1 since θ
bh
d,t+1( j) is non-increasing over j ∈ J ,

which contradicts with the optimality of qd∗
j , j ∈ J . �

Note that the above transformation also works for the
general piecewise linear approximation function with different
segment lengths ρ( j) ∈ [0, N], j ∈ J ,

∑
j∈J ρ( j) = N .

In that case, we have qd
j ∈ {0, 1, . . . , ρ( j)} and qd∗

j is the
optimal value of pd

t+1 distributed in the j -th segment with∑
j∈J qd∗

j = pd
t+1.

Given the system state st , we can obtain the optimal action
a∗

t for (14) by solving (15) with commercial solvers. After
obtaining the objective value V̄t (st ) of (14), we perturb the
physical state pt by pt,d = pt + ed to calculate the marginal
value at point pd

t on coordinate d,∀d ∈ D. Here ed is referred
to as a D-dimensional column vector, with only the d-th
element equal to 1 and all others equal to zero. In other
words, pt,d equals pt , except that the d-th coordinate of pt
is incremented by 1. The system state after perturbation is
denoted by st,d = ( pt,d, ξ t , ζ t ). Note that, by having one
additional EV, the perturbation may result in an infeasible state
st,d , which violates the constraint of the total number of EVs
in (1). However, this state does not exist in real operation
process, which is only used to estimate the marginal value of
state st .

With the information state (ξ t , ζ t ) and its index c
unchanged by perturbation, we calculate the value of per-
turbation by �c

d,t(st ) = V̄t (st,d) − V̄t (st ),∀d ∈ D. The
corresponding slope is then iteratively updated by

θ c
d,t(pd

t ) = (1 − αw)θ c
d,t(pd

t ) + αw�c
d,t(st ), (16)

where α is a constant less than one. w is the iteration
index, indicating the total number of rounds that have been

Algorithm 1 EMoD Value Function Approximation Algorithm
1: Initialize θ c

d,t( j),∀t ∈ T , c ∈ C, d ∈ D, j ∈ J .
2: for w = 1, 2, . . . , W do
3: Set step size αw .
4: for t = 1, 2, . . . , T do
5: Randomly sample (ξ t , ζ t ) ∈ It and get c ∈ C.
6: if t = 1 then
7: Randomly generate an initial physical state pw

t .
8: else
9: Compute pw

t = f (sw
t−1, aw,∗

t−1).
10: end if
11: Randomly sample (ξ t+1, ζ t+1) ∈ It+1 for H times.
12: For aw

t ∈ At (sw
t ), calculate V̄t (sw

t ) and obtain aw,∗
t by

solving (14).
13: for d = 1, 2, . . . , D do
14: Set st = sw

t .
15: Randomly perturb the state st by st,d .
16: Compute �c

d,t (st ) = V̄t (st,d) − V̄t (st ).
17: Set θ c

d,t(pd
t ) = (1 − αw)θ c

d,t(pd
t ) + αw�c

d,t(st ).
18: Execute SPAR algorithm on θ c

d,t .
19: end for
20: end for
21: end for

implemented during the updating process. αw is called the step
size, which decreases exponentially in the rounds of iterations.

Note that the update (16) cannot guarantee θ c
d,t( j) is non-

increasing over j ∈ J , which may lead to a non-concave
function gc

d,t(·). Therefore, we apply the SPAR algorithm [12]
for updating slopes θc

d,t to maintain the concavity of gc
d,t(·).

Here the SPAR algorithm is used to check if the slopes θ c
d,t( j)

are non-increasing over j ∈ J . If some slopes θ c
d,t( j) are

increasing over j ∈ {n1, n1 + 1 . . . , n2} ⊆ J , the SPAR
calculates the average of these slopes and set θ c

d,t( j), j ∈
{n1, . . . , n2} as the average value. The SPAR keeps checking
θ c

d,t( j) from j = 1 to N until the non-increasing property is
retrieved for all slopes.

D. ADP-Based Solution

In this section, we show the complete solution for the EMoD
problem, which consists of two main steps.

1) Value Function Approximation: We approximate the
value function (9) by a piecewise linear function (13) using
Algorithm 1. We uniformly initialize all slopes θ c

d,t( j) for
∀t ∈ T , c ∈ C, d ∈ D, j ∈ J and then iteratively update
the slopes in a total of W iterations. In each iteration w, the
step size is set as αw . We randomly generate the physical state
pw

t if we are at the initial period 1, otherwise, calculate it by
pw

t = f (sw
t−1, aw,∗

t−1). Here aw,∗
t−1 is the optimal action derived

by solving (14). The information state (ξ t , ζ t ),∀t ∈ T is
randomly sampled from It and the corresponding information
index c can be observed. In Line 12, we calculate V̄t (sw

t ) and
obtain the optimal action aw,∗

t of (14) by utilizing the slopes
θb

t+1 updated in the last iteration. After that, we perturb the
state sw

t in each coordinate d ∈ D of pt in Line 15 and
update the slopes θ c

d,t(pd
t ) in Lines 16 to 17. We apply the
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Fig. 3. A HK map with three regions and six links.

SPAR algorithm to maintain the coordinate-wise concavity of
V̂t ( pt , θ

c
t ) in Line 18, and move on to the next period until the

end period T . Note that θ c
d,T+1( j) = 0, j ∈ J . This procedure

is repeated until finishing W rounds of updating.
This step is implemented in an offline manner. The infor-

mation state (ξ t , ζ t ),∀t ∈ T is sampled from the distributions
of mobility demand and charger availability estimated from
historical data. Since such distributions will usually not change
dramatically on an ordinary day, the offline value function
approximation can be implemented with a relatively low
frequency (e.g., weekly or monthly). In special cases (e.g.,
public holidays or sports events), Algorithm 1 can be run based
on the specific data from these cases.

2) Real-Time Decision-Making: By implementing
Algorithm 1 in an offline manner, we can obtain the
approximate value function V̂t ( pt , θ

c
t ),∀t ∈ T , c ∈ C. Then

we substitute the approximate value function to the DP and
can directly solve the problem (14) (which is equivalent to
the LP (15)) to obtain the real-time decisions within seconds.
In each step, the expected value function E[V̂t+1(st+1, θ

b
t+1)]

is still estimated by the sampled average value while the
state transitions across steps are determined by the actual
realizations of the mobility demand and charger availability.

IV. SIMULATION RESULTS

In this section, we assess the performance of our algorithm
in an EMoD system in three service regions, Causeway Bay,
Hung Hom and Lam Tin, of Hong Kong (HK) in Fig. 3.

A. Simulation Setups

EMoD System Model. We consider EMoD systems with
two different scales:

1) A small-scale system operates a total of N = 5 EVs and
provides on-demand mobility services for L = 2 links
in M = 2 service regions (Hung Hom and Lam Tin).
The total number of SoC levels is set as K = 3 and the
service time horizon is T = 3.

2) A large-scale system operates a total of N = 100 EVs
and provides on-demand mobility services for L = 6
links in M = 3 service regions (Causeway Bay, Hung
Hom and Lam Tin). The total number of SoC levels is
set as K = 4 and the service time horizon is T = 16.

Fig. 4. Mobility demand in each time period.

Fig. 5. Time-varying traveling time and SoC consumption.

The small-scale system is used to test the accuracy of our
ADP-based solution, by comparing it with the optimal solution
from backward induction. The large-scale system is to test the
effectiveness of our algorithm in making operational decisions
in practice by comparing the overall system revenues obtained
by our algorithm and two benchmark algorithms.

System State. We introduce detailed large-scale system
settings and omit those of the small-scale system, which
are obtained with the same logic in the large-scale system.
We obtain the physical state by randomly generating the
number of EVs with different SoC levels in different locations.
To estimate the mobility demand on different travel links,
we use the data from HK Transport Department [27], [28].
Specifically, based on the proportion of total traveling of one
day in each hour (7AM-11PM), we estimate the mobility
demand distribution. The time duration of one time period is
set as one hour. By further accessing the average daily traffic
on the major roads between Causeway Bay, Hung Hom and
Lam Tin, we can obtain the hourly mean demand on each
travel link. To fit the number of 100 EVs, we scale the total
demand of the six links in the peak hour 8-9 AM (period 2) as
80% of the total EVs and present the obtained demand patterns
in Fig. 4. We also add a margin of 20% of the mean to capture
the demand variance, and sample the demand uniformly from
the corresponding margin.

We also use the data from HK Environmental Protection
Department for the total number of public EV chargers in
the three areas (HK Island, New Territories and Kowloon)
of HK [29]. The total number of public EV chargers in the
three areas are 634, 861, and 1473, respectively, and the
total number of registered EVs in HK is around 7000. Thus,
by introducing a scaling factor of 70, the total number of
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TABLE II

DISPATCHING REWARD AND REPOSITIONING COST (HKD)

public chargers in the three service regions of the EMoD
system are estimated as {10, 13, 22}. The distributions of avail-
able chargers in each period are differentiated by high-demand
periods t ∈ Th := {1, 2, 3, 12, 13, 14} and low-demand periods
t ∈ T \ Th . Specifically, the number of available chargers
in the three service regions is drawn from [0, 7], [0, 9] and
[0, 15] in the high-demand periods and [4, 10], [6, 13] and
[10, 22] in the low-demand periods, since it’s possible to have
no available chargers in high-demand periods and abundant
available chargers in low-demand periods.

Traffic and Price. The traveling times between Causeway
Bay, Hung Hom and Lam Tin are obtained from Google Map
data (7AM-11PM). By introducing a scaling factor of 12,
5-minute traveling time is scaled to one hour (one time period),
in order to capture the dynamic of in-transit EVs between
different time periods. Note that we can also set a shorter
time duration of one time period to fit the actual traveling
time. Energy consumption is set proportional to the traveling
time. By scaling and ceiling the data to integer values, the
traveling time (number of periods) and energy consumption
(SoC levels) are visualized in Fig. 5.

The EVs have a battery capacity of 40 kWh, and the
charging power is set as 10 kW. Based on the electricity
prices in the three areas of HK, the per-SoC (10 kWh)
charging costs are set as {λi

t }i∈M = {10, 9, 8},∀t ∈ T
(HKD). We also set the penalty of losing one customer as
{η�

t }�∈L = {5, 6, 6, 5.5, 6, 5},∀t ∈ T (HKD). We set the
per-EV dispatching reward r�

t and per-EV repositioning cost
γ �

t on each travel link � ∈ L based on traffic congestion
conditions, which are distinguished by high-congestion t ∈
{2, 3, 12, 13}, medium-congestion t ∈ {4, 5, 11, 14} and low-
congestion periods t ∈ {1, 6, 7, 8, 9, 10, 15, 16}. We list the
setup information of r�

t and γ �
t in Table II.

B. Benchmarks

We compare our proposed algorithm with the following two
model-free benchmark algorithms.

1) Q-Learning With Linear Function Approximation: This
algorithm approximates the Q-function Qt (st , at ) by a lin-
ear feature based approximate function Q̃t (st , at ,ωt ) =∑β̄

β=1 ω
β
t φ

β
t (st , at ) = ω

ᵀ
t �t (st , at ), where �t (st , at ) is the

feature function with β̄ = 24 dimensions, representing the
mapping from the state and action space to the feature space,
and ωt is the weight vector for the feature. The 24 features
φ

β
t (st , at ) are extracted as follows:

∑
k∈K� x�k

t ,
∑

k∈K� z�k
t

and
∑t−1

ι=t−τ �+1

∑
k∈K� u�k

ι ,∀� ∈ L are the numbers of
repositioned, dispatched and in-transit EVs on each link �.∑

k∈K yik
t ,∀i ∈ M captures the number of EVs that start

to be charged in period t , and
∑

k∈K v ik
t ,∀i ∈ M indicates

the total number of EVs in each region. The weight vector

Fig. 6. Performance improvement during slope updating.

ωt can then be obtained from a temporal difference learning
process. Interested readers can refer to [30] for more about
the aforementioned method.

2) Greedy Heuristic Algorithm: This algorithm serves the
mobility demand by dispatching EVs with sufficient SoC
levels from low to high, so as to reserve EVs with high SoC
levels for future usages. A repositioning decision is made
after dispatching. Specifically, remaining EVs with sufficient
SoCs will be repositioned to the adjacent region with the
highest demand in last period. Without exact information of
the number of chargers in the future, the remaining EVs after
repositioning will be recharged based on current SoC levels.
EVs with low SoCs have high priority to be charged by the
available chargers.

C. Parameter Update

To evaluate the performance of Algorithm 1, we first present
the revenue improvement during parameter updating iterations
in the large-scale system. The slopes θ c

d,t( j),∀t ∈ T , d ∈
D, c ∈ C, j ∈ J are initialized as 1, and α is set as 0.99.

Fig. 6 shows the overall system revenue within 16 periods
versus the rounds of iterations for the proposed algorithm.
We can observe that during 250 rounds of updating, the total
revenue fluctuates, since the revenue highly depends on the
initial states and the realization of aforementioned uncertain
information. However, with the increase of the iterations, the
revenue increases rapidly and then fluctuates around a constant
value. The running time for 250 iterations is around 14 hours.
However, this algorithm is executed in an offline manner (e.g.,
day-ahead or week-ahead), where we can obtain the approx-
imate value function (14). Based on the approximate value
function, we can make real-time decisions within seconds by
solving the LP (15).

D. Accuracy of the Approximation

We present the accuracy of our approximate function in the
tests of the small-scale system. Specifically, we compare the
overall system revenues of Algorithm 1, Q-learning, Greedy
Heuristic with OPT, the revenue obtained by the optimal
backward induction [11]. Note that even for a small-scale
system, the running time of the backward induction for each
initial state is more than 5 hours, since we have about 106

possible actions.
For any algorithm, the revenue is calculated based on

a given realization of the uncertainties. For the backward
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Fig. 7. Comparison of revenues in the small-scale system.

Fig. 8. Comparison of revenues between Algorithm 1 and two benchmark
algorithms in the large-scale system.

induction, we can get the maximal total revenue based on the
knowledge of the whole uncertainty realization at the begin-
ning of the day. On the contrary, when running Algorithm 1,
Q-learning and Greedy Heuristic, the future realization is
not known. Thus, by enumerating all possible decisions and
outcomes, the revenue of the backward induction provides the
optimal benchmark for a given realization.

Fig. 7 shows the revenue comparison for different initial
states. Specifically, we randomly generate an initial state and
compute the expected revenue of 5 realizations of future uncer-
tainties. We can observe that Algorithm 1 yields near-optimal
solution compared with the optimal solution obtained by back-
ward induction and outperforms the other two benchmarks.
This result demonstrates the accuracy of our approximation in
Algorithm 1. Since we have a penalty for unserved demand in
our formulation, it’s possible to have negative overall revenue
in the small-scale system.

E. Effectiveness of the Approximation

Next, we show the effectiveness of our algorithm in making
decisions in the large-scale system. Fig. 8 compares the
revenues of Algorithm 1, Q-learning and Greedy Heuristic
algorithm for 50 randomly generated initial states. For each
initial state, we calculate the expected revenue for 5 future
realizations. We can find our algorithm produces better revenue
than the other two algorithms.

Based on our formulation (8), we notice that the reposi-
tioning cost and demand-supply mismatch penalty can greatly
affect the overall revenue, and these costs highly depend
on the temporal and spatial difference of mobility demand.

Fig. 9. Revenue distributions under different demand patterns in the large-
scale system.

Fig. 10. Tests on different numbers of EVs.

Thus, to evaluate the impact of different demand patterns,
we intentionally tune the means of demand in different
regions in the following cases. In case 1 (case 3), we set
larger (smaller) mean demands on travel links originating from
region 2 than those in the other two regions (the means are
the same in these two regions). In case 2, we set the same
mean in all links. In each case, the total (mean) demand
of all links in time period 2 is set as 80% of the total
number of EVs. The mean demand in each time period is then
set based on the demand distribution obtained in Sec. IV-A.
The distributions of available chargers in each period are the
same as our previous settings in Sec. IV-A. Fig. 10 shows
the revenue distributions of the three algorithms. In each
case, we generate different initial states and compute the
expected revenue for uncertainty realizations under different
demand patterns. We can observe i) the revenue distribution
under the balanced demand is much better than those in the
other two cases, since the repositioning cost and penalty are
decreased, and ii) Algorithm 1 significantly outperforms the
other algorithms in all cases.

F. Scalability of Algorithm 1

In order to show the scalability of Algorithm 1, we first
perform tests on systems with 500 and 1000 EVs, respec-
tively. The hourly mean demand and number of available
chargers are scaled by 5 and 10, according to the number
of EVs. We show the overall system revenues during the
offline updating processes in Fig. 10. We can observe that the
revenues increase and then fluctuate around constant values
in both cases. The execution times of the two tests are
26 and 42 hours, respectively. Further, we show the execution
time of Algorithm 1 (250 iterations) as the number of paths
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Fig. 11. Execution time of approximate value functions as the number of
paths increases.

varies from 6 to 50 in Fig. 11(a). We scale the transportation
network by adding one service region with an increase of two
paths. It can be observed that the execution time increases
up to 25 days when the system is with 25 regions, 50 paths
and 200 EVs. However, this is acceptable since Algorithm 1
is implemented in an offline manner (on a weekly or monthly
basis) to obtain the slope values of the approximate value
function.

There exist many approaches to further improve the scala-
bility in practice. We note that the most time-consuming step
of Algorithm 1 lies in the slope updates of D coordinates
(Lines 13-19). We can randomly choose D̂ coordinates from
all the D coordinates to update the slopes and keep other
slopes unchanged in each iteration. In this way, the execution
time can be significantly reduced to a few days as shown in
Fig. 11(b), where we set D̂ = 10. However, this solution-
wise heuristics will sacrifice the accuracy of the approximate
value function and the resulting system revenues (around
73% of the revenue obtained by running Algorithm 1). The
approximation accuracy is expected to further reduce in larger
systems since D̂ updates will then provide much coarse slope
updates to approximate the value functions. In addition, the
execution time can be reduced by employing more computa-
tion resources, when the operator is faced with a larger system.
We can also partition a large geographic area into several small
areas and provide mobility services separately for each area
to speed up the execution of Algorithm 1.

V. CONCLUSION

In this paper, we proposed a mathematical model for
mobility and energy management in an EMoD system under
stochastic and non-stationary mobility demand and charger
availability. Specifically, the management of the EMoD sys-
tem involves a complex sequential decision-making process,
including repositioning, recharging and dispatching. Thus,
we formulated the problem into a stochastic DP problem.
To tackle the curse-of-dimensionality in solving the large-scale
DP problem, we adopted a separable piecewise linear function
as an approximation of the value function, based on a rigor-
ously proved structural property of the formulated problem.
Moreover, we designed an algorithm to update the parameters
of the approximate value function iteratively in an offline
manner. During the operation of the EMoD system, we can
apply this approximate value function to make decisions within

seconds. In numerical tests, we conducted both small-scale and
large-scale tests to show the accuracy and effectiveness of our
algorithm by comparing overall system revenues with different
benchmarks.
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