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Abstract—Resource-constrained end devices can offload com-
putation to backend clouds. The stochastic wireless channel that
an end device is connected to can introduce bursty computation
demand to the cloud. Specifically, under good channel conditions,
a device can transmit more data to the cloud, which consequently
yields higher instantaneous computation demand. Conversely,
poor channel conditions can result in lower instantaneous de-
mand. The performance indicator for such a mobile cloud
computing system is the average of the response time, which
is the time span from the arrival of the computation demand at
the backend cloud instance to the completion of its execution.
The question we target in this paper is how resources should be
provisioned for the backend cloud instance to address this bursty
computation demand and guarantee a desired quality-of-service
(QoS), namely, a user-specified average response time. To answer
this question, we model the mobile cloud computing system as two
tandem queues. We analyze this queueing network using the fluid
flow analysis framework, and derive the analytical relationship
between the required resource capacity at the backend cloud
instance and the desired QoS, given the workload generation
process at the end device and the wireless channel conditions.
Having obtained the required resource capacity for a desired
QoS, we then determine whether it is economical to provision
this resource capacity by subscribing to the traditional static
instance or the recently introduced burstable instance offered by
public cloud providers. Finally, trace-driven simulations validate
our theoretical results.
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I. INTRODUCTION

FOR many computation-intensive Internet of Things (IoT)
applications, the workload generation rate at the resource-

constrained end device is usually much higher than the local
computation capability. Mobile cloud computing has thus
been proposed to offload the extra workload that cannot
be tackled locally to the backend cloud for execution. The
performance of mobile cloud computing depends on how fast
the workload can be processed (i.e., the latency from the
workload generated at the end device to the completion of
its execution in the cloud) [2]–[13]. This latency consists
of two parts–the transmission time from the end device to
the backend cloud and the response time from the arrival
of the workload at the cloud instance to the completion of
its execution.1 The transmission time, however, depends on
the physical communication channel between the end device
and the cloud, which is usually uncontrollable. Therefore, the
key question that we target in this paper is how to provision
resources to the backend cloud instance to guarantee a desired
average response time.

Making a resource provisioning decision for the backend
cloud is a non-trivial task. Typically, end devices are connected
to the network via wireless links. As shown in Figure 1, the
stochastic evolution of the wireless channels results in time-
varying throughput and consequently brings bursty computa-
tion demand to the backend cloud.2 Specifically, when the
wireless channel is in a good condition with high throughput,
an end device is able to transmit more data to the backend
cloud instance for execution, leading to higher instantaneous
computation demand. In contrast, a lower instantaneous com-
putation demand is received by the cloud instance under a poor
channel condition. Our resource provisioning decision should
be able to meet this bursty computation demand that arrives
at the cloud through the time-varying wireless channel.

The key in making the resource provisioning decision is to
analytically model the relationship between the provisioned
resources at the cloud and the resulting average response
time given the parameters of the system environment, which
involves the wireless channel parameters and the workload

1The time to transmit the execution result from the cloud back to the edge
device is usually negligible, and thus not included as a performance metric.
This is because the execution result typically has a much smaller size than
the offloaded raw data [4], [9], [14]–[16].

2Since the workload offloaded from the end device to the cloud instance
can also be viewed as the computation demand to be fulfilled by the cloud,
we use the words “workload” and “demand” interchangeably in this paper.
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Fig. 1: LTE throughput under different mobility patterns
[17]. It can be observed that the throughput experiences vast
variations for moving end devices, such as for a moving bus
or moving car. When the end device is static, the throughput
for this device still varies from 1 Mbps to 12 Mbps over time.

generation process at the end device.3 The mobile cloud
computing system can be abstracted as two tandem queues,
where the first queue models the offloading process from
the end device to the cloud instance, and the second queue
models the workload execution procedure in the cloud. The
major technical challenge in analyzing this tandem queue
network lies in quantifying the burstiness of the computation
demand received by the cloud instance after it passes through
a time-varying wireless channel. Note that this tandem queue
network cannot be analyzed using the conventional Jackson
network theory [18] with off-the-shelf analytical results. This
is because the service rate of the first queue, which captures
the throughput of the wireless channel, is modulated by the
time-varying channel conditions (which can be modeled as
a Markov chain). Therefore, we must explicitly characterize
the output process of the first queue, which is equivalently
the input process of the second queue, before delving into a
detailed analysis of the second queue. However, most existing
works on Markov-modulated queues (e.g., [19]–[21]) can only
derive the output process for queues with a Markov-modulated
arrival rate and a constant service rate. To the best of our
knowledge, while a few papers (e.g., [22]) have studied the
queues with a Markov-modulated service rate, they only focus
on deriving the stationary distribution instead of the output
process (see Section II-A for details).

In this paper, we explicitly characterize the output process
of a queue with a Markov-modulated service rate to bridge
the research gap. Based on this result, we further conduct a
comprehensive analysis of the tandem queue model for mobile
cloud computing and derive an analytical performance model
between the required resource capacity at the backend cloud
instance and the desired average response time.

Our performance model can help to not only calculate the
required resource capacity for the backend cloud instance, but
also make appropriate cloud resource provisioning decisions
with the least monetary cost. Once the required resource
capacity is known, we can calculate its mean utilization with
our performance model. The resource capacity and its mean
utilization act as two critical indicators in selecting the most

3In this paper, we treat one end device as a user and assign him/her a
backend cloud instance. We thus use the words “end device” and “user”
interchangeably.

appropriate instance type and configuration from the instance
offerings of public clouds. In general, there are two types of
instances in state-of-the-art offerings of public cloud providers
(such as Amazon EC2 and Microsoft Azure): traditional static
instances and the recently introduced burstable instances [23]–
[25]. When a user subscribes to a traditional static instance,
(s)he is offered a dedicated resource capacity (e.g., two vC-
PUs) for his/her instance, which can be freely used up at all
times. The unit price of a static instance depends only on the
provisioned resource capacity. In contrast, if a user subscribes
to a burstable instance, (s)he is also offered a certain resource
capacity (e.g., two vCPUs), but will be charged according to
both this resource capacity and its actual utilization. If the
average actual utilization is lower than or equal to a certain
baseline, which is pre-announced by the cloud provider, the
user will pay a fixed price, which is much lower than the price
of a static instance with the same resource capacity. However,
if the user’s average utilization exceeds the baseline, (s)he will
need to pay an additional charge proportional to the surplus.
If this surplus is very large, the ultimate combined charge
for the burstable instance can be much higher than that for
a static instance with the same resource capacity. Fortunately,
our performance model is able to calculate the mean utilization
of the capacity. By further formulating the pricing strategies
from the current instance offerings of public cloud providers
and combining them with our performance model, we then
determine whether static instances or burstable instances are
more economical to be deployed at the backend cloud and
guarantee a desired quality-of-service (QoS) requirements,
namely a desired average response time.

To sum up, our contributions in this paper are as follows.

• We propose a tandem queue model for a practical mobile
cloud computing system. The first queue models the of-
floading process from the end device through the wireless
channel, and the second queue models the computation at
the backend cloud instance. The key technical challenge
in analyzing this tandem queue model lies in tackling the
first queue’s Markov-modulated service rate, which mod-
els the wireless channel in the computation offloading. To
this end, in Section III, we prove that the output process
of the first queue is a semi-Markov process (SMP) and
derive the statistical characteristics of this SMP. To the
best of our knowledge, we are the first to conduct a
theoretical analysis of the output process of a queue with
a Markov-modulated service rate. To gain more insights
into our analytical results on the SMP, we then use the
Gilbert-Elliott channel, a widely adopted channel model,
as an example to numerically showcase the output process
of the first queue.

• Having obtained the output process of the first queue
in the tandem queue model, we are ready to derive the
analytical relationship between the resource capacity at
the backend cloud instance and the resulting average
response time (i.e., to derive the analytical performance
model) from the second queue. In Section IV, we first
propose a simple yet accurate approximation for the
first queue’s output process as a continuous-time Markov
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chain (CTMC). The analytical performance model is then
derived using the fluid flow analysis framework.

• Given a desired average response time, our performance
model is able to derive the corresponding resource ca-
pacity required at the backend cloud instance, and further
calculate the actual utilization of this capacity. According
to these two resource indicators, i.e., the required resource
capacity and its mean utilization, we can determine the
instance type and configuration to choose from current
instance offerings of public clouds in order to provision
the required resource capacity as a backend cloud in-
stance with the minimum monetary cost. In Section V,
we model the charges of static and burstable instances as
functions of the two resource indicators, based on which
we then decide on the instance type.

• In Section VI, we validate our theoretical results by
trace-driven simulations. Numerical results show that
our performance model can accurately approximate the
average response time. In terms of the choice of instance
type, burstable instances are preferred to save users’
monetary costs when (i) the wireless channel changes
very rapidly, with the demand being generated in a rather
bursty manner, and (ii) the QoS requirement (i.e., the
desired average response time) is more stringent.

The remainder of this paper is organized as follows. We
first survey the literature in Section II-A. The core idea of
fluid flow analysis framework, the method that we will use
to analyze our tandem queue model, is briefly introduced in
Section II-B before we delve into our technical analysis. We
present our tandem queue model and derive the output process
of the first queue in Section III. We then derive the relationship
between the resource capacity at the backend cloud instance
and the average response time in Section IV, which completes
our analytical performance model. The decision on instance
type is made in Section V. We validate our analytical results
by trace-driven simulations in Section VI. Finally, Section VII
concludes the paper.

II. BACKGROUND AND RELATED WORK

In this section, we first survey the literature, and then
introduce the fluid flow analysis framework for queueing
network analysis.

A. Related Work

Computation offloading [26], [27] is an important and
widely studied topic in IoT and future wireless networks
[28]. However, a limited number of existing works have
addressed how to evaluate the response time of the offloaded
computation demand. Most of the existing works (e.g., [2]–
[8]) focus on offloading decisions about when and how much
of the workload is to be offloaded from end devices. They
simplify the response time as a positive constant [2]–[6] or
simply zero [7]. Other works use oversimplified and unrealistic
assumptions and models to address the average response time.
Following the Lyapunov optimization framework, for example,
Mao et al. [9] take the response time into account, but without
providing an analytical expression nor guaranteeing a required

response time. Other works [10]–[12] derive the analytical
response time by assuming that workload can be offloaded
from the end device through a perfect wireless channel with
constant throughput. However, this assumption is inconsistent
with the situations in real-world systems, as we have stated in
Section I and shown with Figure 1. Therefore, to understand
the performance of practical mobile cloud computing systems
for better planning and real-time decision-making, this paper
aims to analytically model the average response time by
considering a practical finite-state CTMC wireless channel
model.

Technically, a key contribution of our work is to derive the
output process of a Markov-modulated fluid model (MMFM).
In the literature, there exists a large body of works (e.g., [19],
[20], [29], [30]) on the performance analysis of MMFM.
However, most focus on the MMFM with a Markov-modulated
arrival rate and a constant service rate. Our paper is different
from this line of works in that we focus on an MMFM
with a Markov-modulated service rate, where this service rate
changes according to an external CTMC. Although the station-
ary distribution of this queueing model can be derived from the
classical fluid flow analysis (see Section II-B for details), how
to derive its output process still remains largely unexplored in
the literature. This is because the output process of the MMFM
is known to be non-Markovian, making its application to fluid
queueing networks significantly challenging.

To the best of our knowledge, the most relevant works to
ours are [19] and [20], which essentially study the output
process of the MMFM with a Markov-modulated arrival rate
and a constant service rate. These works approximate the out-
put process as a CTMC by lumping all non-Markovian states
with the same fluid drift into one state and approximating the
sojourn time by an exponential variable. This approximation
is only valid when the stationary probability of this lumped
state is small, which is the case in [19] and [20]. Different
from these works, however, our MMFM has a constant arrival
rate and a Markov-modulated service rate. Therefore, the non-
Markovian states are associated with different fluid drifts. We
should also note that the sojourn times of the non-Markovian
states are not negligible in our model. As a result, the existing
analytical results cannot be directly applied to our problem.

Rather than the fluid model, Mahabhashyam et al. [22]
analyze the average response time (but not the output process)
of a queue with a Markov-modulated service rate using the
matrix geometric method (MGM). Huang et al. [31] further
extend the analysis using the service-beginning probability
proposed in [22] and derive closed-form expressions of the
average response time for the same queuing model with a
finite buffer. However, deriving the output process of a queue
is far more complicated than deriving the average response
time. Therefore, the theoretical results in [22] and [31] cannot
be simply extended to derive the corresponding output process.
In summary, to the best of our knowledge, no prior work
has derived the output process of a queue with a Markov-
modulated service rate.

After a resource capacity is derived for a desired QoS from
our performance model, the next step in making the resource
provisioning decision is to determine how to provision this
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resource capacity at the backend cloud, i.e., which type
of instance to choose from the offerings of public cloud
providers. Besides the traditional static instance, our work
also considers burstable instances, an instance type recently
introduced by public cloud providers. Burstable instances have
been an emerging research topic over the past few years,
and the majority of existing works on burstable instances are
empirical reports on their use cases [32]–[36]. The theoretical
work on burstable instances most relevant to ours is by Jiang
et al. [25], in which the performance of burstable instances
in an Infrastructure-as-a-Service (IaaS) cloud is analytically
modeled. Based on the performance model, an optimal pricing
scheme is then worked out for public cloud providers. This
work considers the perspective of public cloud providers
in setting instance configuration and pricing schemes that
can maximize their revenues. Given the pricing schemes
announced by the public cloud providers, our work considers
the perspective of an individual cloud user. We determine the
best selection of instance type and configuration according to
the user’s required average response time for mobile cloud
computing. To the best of our knowledge, no work in the
literature has done this before.

B. Preliminaries on Fluid Flow Analysis
Traditional queueing theory [37] studies a system of one

or more servers at which individual customers arrive and
receive services from the servers. A fluid queue model [30]
approximates the traditional discrete queue model by treating
the customers as a continuous (i.e., highly fine-grained) entity,
which is referred to as a “fluid.” As shown in Figure 2, the
fluid flows in and out of a fluid reservoir (i.e., the buffer of the
queue) at certain input and output rates, respectively. The state
of a fluid queue is defined as the amount of buffered fluid at
a particular time instance and the state dynamics depends on
the net input rate (i.e., the instantaneous fluid input rate minus
output rate) of the fluid queue. In this paper, we particularly
focus on an MMFM, in which the net input rate depends on an
external Markov process, and fluid flow analysis is a technique
to evaluate the stationary distribution of the MMFM. When
conducting fluid flow analysis, we usually consider a fluid
queue with an infinite-size buffer, which can temporally store
fluid that flows through it. (We include a discussion on how
to remove the assumption of an infinite-size buffer for real-
world systems at the end of this sub-section.) Let Xt denote
the amount of buffered fluid at time t, X := {Xt}t≥0 denote
the fluid process, and S := {St}t≥0 denote a CTMC with
state space S := {1, 2 . . . , N}.

An MMFM is defined as the joint process of fluid process
X and CTMC S, i.e., {(Xt, St)}t≥0. The dynamics of S is
independent of X , and the evolution of St is totally governed
by its intensity matrix Q := {Qij}i,j∈S , where Qij is the
transition rate from state i to state j when j ∈ S \ i and Qii =
−
∑

j∈S\i Qij . Let π = [π1, . . . , πN ] denote the stationary
distribution of S. π can be derived by solving a linear system
π ·Q = 0 and π ·1N×1 = 1, where 1N×1 is an N -dimensional
column vector with all elements equal to 1.

The dynamics of the fluid X is modulated by S. In
particular, the net input rate of the fluid queue depends on

Input fluid Output fluid

Fig. 2: The Markov-modulated fluid model (MMFM). The
continuous fluid flows into the buffer. The server can be
considered as a tap that allows the fluid to flow out. The
amount of buffered fluid at time t is denoted by Xt. The
dynamics of the fluid, i.e., dXt/dt, depends on an external
Markov process.

the state of the CTMC. Let di denote the net input rate when
the CTMC is in state i. When di > 0 (di < 0), we say that
the fluid queue is with an upward (downward) fluid drift. The
fluid dynamics is governed by the net input rate as long as the
fluid change is physically feasible, i.e.,

dXt

dt
=

{
[di]

+ if St = i,Xt = 0,

di if St = i,Xt > 0,
(1)

where [di]
+ := max{di, 0}. Therefore, an MMFM can be

fully characterized by the intensity matrix Q of the CTMC
S and the fluid drift vector d := [d1, . . . , dN ]. Note that
the buffer is in fact a temporary storage of the fluid. To
ensure the stability of the fluid queue, the amount of buffered
fluid should be prevented from growing towards infinity. The
stability condition [30] of the fluid queue is thus∑

i∈S
πidi < 0, (2)

which means the long-term average input rate should be
smaller than the corresponding output rate. When condition
(2) is satisfied, the bi-variant process {(Xt, St)}t≥0 converges
to a stationary joint distribution

Fi(x) = lim
t→∞

P (Xt ≤ x, St = i) , i ∈ S, x ≥ 0, (3)

which is the probability that the CTMC is in state i and the
fluid is no larger than x. Assuming all drifts are non-zero, i.e.,
di ̸= 0,∀i ∈ S, the joint distribution satisfies the following
first-order differential equations [38]:

dF (x)

dx
= F (x)QD−1, (4)

where F (x) := [F1(x), . . . , FN (x)] and D := diag(d). It has
been known that the solution of Equation (4) can be expressed
as a sum of exponential terms, i.e.,

F (x) =

N∑
k=1

ake
ξkxvk, (5)

where ξk and vk := [vk1, . . . , vkN ] are the k-th eigenvalue
and eigenvector of QD−1, respectively, and {ak}k=1,...,N are
coefficients to be determined by the boundary conditions.
(The boundary conditions will be discussed later in this sub-
section.) The state space S is partitioned into two separate
sets, SD := {i ∈ S|di < 0} and SU := {i ∈ S|di > 0},
which consist of the states with downward and upward fluid
drifts, respectively. When the stability condition (2) is satisfied,
the numbers of negative and positive eigenvalues of QD−1
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are |SU | and |SD| − 1, respectively [39]. To ensure the joint
distribution F (x) is bounded, the coefficients that correspond
to positive eigenvalues must be zero, i.e., ak = 0 for k, where
ξk > 0. Also note that 0 and π are a pair of one eigenvalue and
one eigenvector of QD−1, and their corresponding coefficient
is 1 since limx→∞ F (x) = π must hold. As a result, only |SU |
coefficients remain to be determined, and the joint distribution
can be simplified as

F (x) = π +

|SU |∑
k=1

ake
ξkxvk, x ≥ 0. (6)

Note that Fi(0), the probability that the buffer is empty when
the CTMC is in state i, is zero when the fluid drift is positive.
We can thus get |SU | boundary conditions:

Fi(0) = 0, i ∈ SU . (7)

The remaining coefficients {ak}k=1,...,|SU | can be determined
by combining Equations (6) and (7). In this way, the joint
stationary distribution can be fully obtained, based on which
we can further derive the statistical characteristics (e.g., the
average queue length) of the fluid queue.

Admittedly, it is usually impractical to have an infinite-
size buffer in real-world systems. However, it is always
possible to choose a sufficiently large buffer size B under
the stability condition (2), where the probability that the fluid
is beyond B is negligible. To see this, note that the stationary
distribution (6) is the sum of exponential terms. For a large
x, F (x) will be dominated by the exponential term with the
largest (negative) eigenvalue, which we denote by ξ1. As a
result, the overflow probability of the fluid beyond x can be
approximated as

F̄ (x) ≈ 1−
N∑

n=1

πn − a1

N∑
n=1

πnv1ne
ξ1x = A1e

ξ1x, (8)

where A1 = a1
∑N

n=1 πnv1n. Since F̄ (x) decreases exponen-
tially with regard to x, it is always possible to choose a B
value to ensure that F̄ (B) is negligible. Thus, the overflow
probability of a fluid queue with a buffer size B can be
approximated by F̄ (B) of the infinite queue model. In this
regard, we can focus on the fluid flow analysis for the infinite-
size buffer queue and the results can well approximate a
practical system with a buffer size B. In other words, the
fluid flow analysis also provides a way to derive the size of
the buffer to guarantee a small overflow probability for real-
world systems (e.g., choosing buffer size B such that F̄ (B)
is in the range of 10−8 to 10−12).

III. TANDEM QUEUE MODEL

We propose a tandem queue model for a practical mobile
cloud computing system, as shown in Figure 3. The first
queue, named the local data queue, models the offloading
process from the mobile user to a backend cloud instance.
The input workload can be either computed locally (i.e.,
local computing) or offloaded via a wireless channel to cloud
instances for processing (i.e., cloud computing). The workload
that cannot be locally computed or immediately offloaded

TABLE I: A summary of the key notations.
λ input workload rate at mobile device
c (cℓ) execution capacity of cloud instance (device)
ĉ effective execution capacity of remote queue
τ target average response time
ρ average capacity utilization of cloud instance
X (Y ) fluid process of local (remote) queue
S (Ω) CTMC that models the wireless channel (of-

floaded demand)
R rate process of offloaded demand
i+ (i0) a state in which S is in state i and X > 0

(X = 0)
S(S)
U (S(S)

D ) set of wireless channel states that lead to
upward (downward) drifts in local data queue

Q(S) (Q(Ω)) intensity matrix of CTMC S (Ω)
r(S) (r(Ω)) rate vector of CTMC S (Ω)
dℓ (de) fluid drift vector of local (remote) queue
F ℓ
i (·)

(F e
i (·))

stationary joint distribution of local (remote)
queue and its corresponding CTMC

π(S) (π(Ω)) stationary distribution of CTMC S (Ω)
ξℓk, vℓ

k the k-th eigenvalue and eigenvector of the
matrix [Q(S)]−1diag(dℓ)

aℓ
k the k-th coefficient of MMFM for local queue

Ȳ ℓ (Ȳ e) average fluid of local (remote) queue
W ℓ (W e) average waiting time of local (remote) queue

is buffered in the local data queue. After going through
a wireless channel, the offloaded demand4 from the user
enters the second queue, named the remote data queue, to
be processed by a backend cloud instance. Both queues in
our tandem queue model execute the workload in a first-in-
first-out (FIFO) manner, and their buffer sizes are assumed to
be infinitely large. The waiting times at the local data queue
and the remote data queue capture the transmission time of
the offloaded workload and the response time at the cloud
instance, respectively.

In the rest of this section, we first derive the stationary
distribution of the local data queue and its average waiting time
in the first sub-section. In the second sub-section, we approach
the offloaded demand, which is both the output process of
the local data queue and the input process of the remote data
queue, by proving that it is an SMP and deriving the statistical
characteristics of this SMP. To gain more insight into our
derived analytical results, in the third sub-section, we apply
them to a Gilbert-Elliott channel, a widely adopted wireless
channel model. The key notations used in this paper have been
summarized in Table I.

A. Analyzing Local Data Queue

We assume that the input workload of the end device is
highly fine-grained and can be modeled as a continuous fluid
that flows into the local data queue at a constant rate λ.
The assumption of a fine-grained workload has been widely
used in the computation offloading literature [7], [8], [40],
[41]. In general, this assumption is valid for many real-world
applications that embrace incoming data streams at a constant
rate, such as stream analytics applications for monitoring and

4In this paper, we define the offloaded demand as the amount of data to be
processed in the remote data queue per unit time.
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Input workload

Offloading via wireless communication

Output results

Local computing

Cloud computing

Remote data queue

Local data queue

Computation at the end device

Computation in the backend cloud

Offloaded demand

Fig. 3: A tandem queue model for a practical mobile cloud computing system with computation offloading. In this model, part
of the workload at the end device is executed locally, while some is offloaded to the backend cloud for execution, through a
wireless communication channel.

surveillance purposes [42], [43]. In this paper, the bursty
demand of the mobile cloud computing system refers to the
demand offloaded to the backend cloud, as shown in Figure
3, resulting from the variations of the wireless channel.

After the input workload arrives at the local data queue,
it will be processed by either the local computing or cloud
computing interface. In this paper, we consider a default
scheduling policy, which greedily sends the workload to the
local computing interface first and then to the cloud computing
interface, as long as the local data queue is non-empty. The
default policy minimizes the latency in the local data queue
since it makes the best use of the local computing resources for
processing the fluid workload. Through the local computing
interface, the workload is executed at a constant processing
rate cℓ. Through the cloud computing interface, on the other
hand, the workload is offloaded at a rate up to the time-varying
throughput of the wireless channel. Thus, both the output rate
of the local data queue and the input rate of the remote data
queue highly depend on the evolution of the stochastic wireless
channel, leading to the stochasticity of both queues. The
backend cloud instance can process the computation demand
at a maximum rate of c, which is referred to as the instance’s
execution capacity in this paper. By analyzing the computation
offloading process, as shown in Figure 3, we aim to establish
the analytical relationship between the execution capacity and
the resulting average response time, given the parameters of
the system environment.

According to [44] and [45], from an application layer
perspective, we can model the wireless channel as a CTMC
S := {St}t≥0, whose intensity matrix is denoted by Q(S).
Let S(S) := {1, . . . , N} denote the state space of S. When
the wireless channel is in state i, its throughput is denoted by
ri. We refer to r(S) := [r1, . . . , rN ] as the concatenated vector
of ri. Thus, the wireless channel can be fully characterized by
its intensity matrix Q(S) and throughput vector r(S).

We then determine the stationary distribution of the fluid
content in the local data queue. Let Xt denote the amount of
fluid at time t. The dynamics of Xt depends on the wireless
channel S given an input workload λ. When the channel is in
state i, the fluid drift of the local data queue is

dℓi = λ− cℓ − ri, ∀i ∈ S(S), (9)

which is the input workload minus the total output rate from
local computing and offloading. Therefore, the joint process
{(Xt, St)}t≥0 forms an MMFM with an intensity matrix
Q(S) and a fluid drift vector dℓ := [dℓ1, . . . , d

ℓ
N ]. Let F ℓ

i (x)

denote the joint stationary distribution of the fluid and wireless
channel as defined in (3). By the fluid flow analysis framework
introduced in Section II-B, the stationary distribution can be
derived as

F ℓ
i (x) = π

(S)
i +

|S(S)
U |∑

k=1

aℓke
ξℓkxvℓki, i ∈ S(S), x ≥ 0. (10)

Given the stationary distribution, the average amount of
fluid at the local data queue is

Ȳ ℓ(λ; r(S), Q(S)) =
∑

i∈S(S)

∫ ∞

x=0

xdF ℓ
i (x), (11)

and based on Little’s Law [46], the average waiting time is

W ℓ(λ; r(S), Q(S)) =
Ȳ ℓ(λ; r(S), Q(S))

λ
. (12)

Remark 1 (Default Scheduling Policy). In this paper, we
primarily focus on analyzing the latency of a mobile cloud
computing system under a default scheduling policy. For many
IoT devices that have a constant and stable (e.g., cable-
connected) power supply and communicate with the backend
cloud via wireless channels, such as surveillance cameras, the
energy consumption of local computing is not a constraint.
In such cases, our local-computing-first policy can minimize
the latency of the local data queue. A related and classical
problem in the computation offloading literature is to optimize
the scheduling policy (or the offloading decisions) to balance
the energy consumption of local computing and the latency of
the local data queue [3], [4], [47]. This is a dynamic control
problem, which is different from our work on performance
analysis in this paper. We will consider the dynamic control
problem in computation offloading as future work.

B. Characterizing Offloaded Demand

The offloaded demand is essentially the output process of
the local data queue through the cloud computing interface.
Therefore, this demand depends on both the buffered fluid in
the local data queue and the conditions of the wireless channel.
Define i0 as the state that represents the buffered fluid being
zero and the wireless channel being in state i. Similarly, define
i+ as the state indicating that there is a positive amount of
buffered fluid and the channel is in state i. Let Ω = {Ωt}t≥0

denote the underlying state evolution process of the offloaded
demand. Since the local data queue can be empty only when
the channel is in the states with downward drifts, we define
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the state space of the underlying process Ω as the union of
three separate sets as follows:

S(Ω) := S(S)
U+

∪ S(S)
D0

∪ S(S)
D+

, (13)

where the sets S(S)
U+

:= {i+|i ∈ S(S)
U } and S(S)

D+
:= {i+|i ∈

S(S)
D } contain the states under which the local data queue is

non-empty and has upward and downward drifts, respectively.
Meanwhile, the set S(S)

D0
:= {i0|i ∈ S(S)

D } includes the states
with empty queues and downward fluid drifts.

When the local data queue is non-empty, the transmission
rate of the offloaded demand is exactly the same as the time-
varying throughput of the wireless channel. However, when
the local data queue is empty, the offloaded demand is limited
to the net input workload λ− cℓ. To avoid the trivial scenario
that the local data queue is always empty, the local computing
capacity cℓ is assumed to be smaller than the input workload
λ. Consequently, the rate process of offloaded demand R :=
{Rt}t≥0 can be constructed by

Rt =

{
ri if Ωt = i+, i+ ∈ S(S)

D+
∪ S(S)

U+
,

λ− cℓ if Ωt = i0, i0 ∈ S(S)
D0

.
(14)

Thus, the rate vector r(Ω) of the offloaded demand can be
defined as

r(Ω) =
[
r
1:|S(S)

U |, (λ− cℓ) · 11×|S(S)
D |, r|S(S)

U |+1:|S(S)
U |+|S(S)

D |

]
.

In summary, the offloaded demand can be fully determined
by the underlying process Ω and the rate vector r(Ω). The
following theorem proves that Ω is an SMP and derives its
statistical characteristics.

Theorem 1. Process Ω is an SMP and its transition kernel is
given as follows.
(i) For the transitions starting from state i0 ∈ S(S)

D0
,

Gi0n(t) =
Q

(S)
ij

−Q
(S)
ii

(
1− e−Q

(S)
ij t

)
,

n = j+ ∈ S(S)
U+

, or n = j0 ∈ S(S)
D0

\ i0.

(ii) For the transitions starting from state i+ ∈ S(S)
U+

,

Gi+j+(t) =
Q

(S)
ij

−Q
(S)
ii

(
1− e−Q

(S)
ij t

)
, j+ ∈ S(S)

D+
∪ S(S)

U+
\ i+.

(iii) For the transitions starting from state i+ ∈ S(S)
D+

,

Gi+n(t) =

qi+i0

∑|S(S)
U |

k=1 pik

(
1− e−ξℓkd

ℓ
it
)
, n = i0 ∈ S(S)

D0
,

qi+j+(1− e−Q
(S)
ij t), n = j+ ∈ S(S)

D+
∪ S(S)

U+
\ i+,

where the transition probabilities are given by

qi+i0 =

|S(S)
U |∑

k=1

pikξ
ℓ
kd

ℓ
i

ξℓkd
ℓ
i −Q

(S)
ii

and qi+j+ =

|S(S)
U |∑

k=1

pikQ
(S)
ij

ξℓkd
ℓ
i −Q

(S)
ii

,

with mixture probabilities, for k = 1, . . . , |S(S)
U |,

pik :=

∑
j∈S(S)\i Q

(S)
ji aℓkv

ℓ
kj∑|S(S)

U |
m=1

∑
j∈S(S)\i Q

(S)
ji aℓmvℓmj

.

Proof. To prove that Ω is an SMP, we need to verify two
conditions according to Definition 1.

Definition 1 (Semi-Markov Process). A stochastic process
Z := {Zt}t≥0 defined on a finite state space S(Z) is called
a semi-Markov process (SMP) if, whenever Z enters state
i ∈ S(Z), (i) it will visit state j ∈ S(Z)\i in the next transition
with a fixed probability qij , and (ii) given the next state is
j, the transition time Tij from state i to state j has a fixed
distribution.

Definition 2 (Transition Kernel). The transition kernel Gij(t)
of an SMP Z is the stationary probability that Z transits from
state i ∈ S(Z) to state j ∈ S(Z) \ i and the transition time Tij

is no larger than t, i.e.,

Gij(t) = qij · P (Tij ≤ t) . (15)

In what follows, we will respectively derive the transition
probability qij and the distribution of the transition time Tij

for process Ω.
We first note that all state transitions of process Ω are due

to the state transitions of the wireless channel, except the
transitions from states i+ ∈ S(S)

D+
to i0 ∈ S(S)

D0
, which result

from the draining of fluid in the local data queue from a non-
empty value to zero. Thus, for the transitions starting from
states i0 ∈ S(S)

D0
and i+ ∈ S(S)

U+
, the transition times to any

feasible states are the same as those of the corresponding wire-
less channel state transitions and are exponentially distributed.
Thus, we have

qij =
Q

(S)
ij

−Q
(S)
ii

, and P(Tij ≤ t) = 1− e−Q
(S)
ij t. (16)

As a result, the transition kernel of Ω in cases (i) and (ii) of
Theorem 1 can be determined based on Equation (15).

To derive the distribution of the time Ti+i0 for the transition
from state i+ ∈ S(S)

D+
to state i0 ∈ S(S)

D0
, we first show

Lemma 1, which gives the conditional distribution of the local
data queue observed just after the transitions of the wireless
channels. Lemma 1 can be proved by following the proof of
Proposition 4.1 in [20].

Lemma 1. The stationary distribution of the fluid in the local
data queue at the onset of channel state i is given by

Hi(x) =
∑

j∈S(S)\i

Q
(S)
ji

−Q
(S)
ii π

(S)
i

F ℓ
j (x),∀i ∈ S(S),

where F ℓ
j (x) is the joint stationary distribution of the MMFM

{(Xt, St)}t≥0 given in Equation (10), and π(S) is the station-
ary distribution of the wireless channel.

Since the fluid content has a stationary distribution at the
onset of each channel state, the transition time for the fluid X
in the local data queue to drain to zero depends only on the
current channel state i and can be determined by X/(−dℓi),
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where dℓi is the downward drift in state i. We can then derive
the distribution of Ti+i0 :

P(Ti+i0 ≤ t) = P
(
X/(−dℓi) ≤ t|S = i,X > 0

)
=

P
(
0 < X ≤ −dℓit|S = i

)
P (X > 0|S = i)

=
Hi(−dℓit)−Hi(0)

1−Hi(0)
,

=

∑
j∈S(S)\i

Q
(S)
ji

−Q
(S)
ii

[
F ℓ
j (−dℓit)− F ℓ

j (0)
]

π
(S)
i −

∑
j∈S(S)\i

Q
(S)
ji

−Q
(S)
ii

F ℓ
j (0)

.

Recall the structure of the joint stationary distribution F ℓ
j (x) =

π
(S)
j +

∑|SU |
k=1 a

ℓ
kv

ℓ
kje

ξℓkx in Equation (10). Substitute it into the
transition time distribution and note the fact that∑

j∈S(S)\i

Q
(S)
ji

−Q
(S)
ii

π
(S)
j = π

(S)
i , ∀i ∈ S(S). (17)

We then have

P
(
Ti+i0 ≤ t

)
=

|S(S)
U |∑

k=1

∑
j∈S\i

Q
(S)
ji

−Q
(S)
ii

aℓkv
ℓ
kj

(
1− e−ξℓkd

ℓ
it
)

∑|SU |
m=1

∑
j∈S(S)\i

Q
(S)
ji

−Q
(S)
ii

aℓmvℓmj

,

=

|S(S)
U |∑

k=1

pik

(
1− e−ξℓkd

ℓ
it
)
, (18)

where the mixture probabilities, for k = 1, . . . , |S(S)
U |, are

pik =

∑
j∈S(S)\i Q

(S)
ji aℓkv

ℓ
kj∑|S(S)

U |
m=1

∑
j∈S(S)\i Q

(S)
ji aℓmvℓmj

. (19)

Note that
∑|S(S)

U |
k=1 pik = 1. Therefore, Ti+i0 is an |S(S)

U |-order
hyper-exponential random variable. Recall that the transition
time Ti+j+ , j ∈ S(S) \ i, is an exponential variable with the
mean 1/Q

(S)
ij . The probability that Ω transits from state i+ to

state i0 can be determined by

qi+i0 = P

(
Ti+i0 < min

j∈S(S)\i
Ti+j+

)
,

=

∫ ∞

0

P
(
Ti+i0 ≤ t

)
P

(
min

j∈S(S)\i
Ti+j+ = t

)
dt,

=

∫ ∞

0

|S(S)
U |∑

k=1

pik

(
1− e−ξℓkd

ℓ
it
)
(−Q

(S)
ii )eQ

(S)
ii tdt,

=

|S(S)
U |∑

k=1

pikξ
ℓ
kd

ℓ
i

ξℓkd
ℓ
i −Q

(S)
ii

, (20)

where minj∈S(S)\i Ti+j+ is an exponential random variable
with the mean 1/(−Q

(S)
ii ). In the same way, we can derive

the transition probabilities

qi+j+ =

|S(S)
U |∑

k=1

pikQ
(S)
ij

ξℓkd
ℓ
i −Q

(S)
ii

, j ∈ S(S) \ i. (21)

To sum up, we have derived qij and the distribution of Tij for
all possible transitions for i ∈ S(Ω), j ∈ S(Ω) \ i. Therefore,
Ω is an SMP, and its transition kernel can be determined by
Equations (15), (16), and (18)–(21).

We can interpret the process Ω as follows. Ω jumps within
a finite state space S(Ω), and the transition time between
two consecutive jumps is exponentially distributed if the jump
starts from state i0 ∈ S(S)

D0
(i.e., case (i)) or i+ ∈ S(S)

U+
(i.e.,

case (ii)). The transition time becomes a hyper-exponential
random variable if the jump starts from state i+ ∈ S(S)

D+
(i.e.,

case (iii)). This is because, in the first two cases, the jumps
of the process Ω are driven by the transitions of the CTMC
of the wireless channel, while in case (iii), i.e, a non-empty
local data queue with downward drift, the jump depends on
either the changes of the wireless channel or the draining of
the local data queue. The time that the queue takes to drain
to empty is usually not an exponential variable. We can also
observe that when there is only one state with upward drift
in the local data queue, i.e., |S(S)

U | = 1, the hyper-exponential
transition time reduces to an exponentially distributed variable,
and hence the SMP Ω reduces to a CTMC. Consequently, we
have the following Corollary.

Corollary 1. When the number of states with upward drifts
of the local data queue is 1 (i.e., |S(S)

U | = 1), the process Ω
is a CTMC.

C. Case Study: Gilbert-Elliott Channel Model

To gain more insight into our offloaded demand model
derived in Theorem 1, in this sub-section, we apply our
model to the case where the wireless channel follows the
Gilbert-Elliott model [48]. This model, which has been widely
adopted in the wireless communication literature [49]–[51],
can capture the key characteristics of a classical wireless
channel while keeping the theoretical analysis tractable. In the
model, the channel evolution is governed by a two-state CTMC
S := {St ∈ {0, 1}|t ≥ 0}, where states 0 and 1 represent the
bad and good channel conditions, respectively. The intensity
matrix of S is given by

Q(S) =

[
−α α
β −β

]
, (22)

where α and β respectively denote the transition rates from
a bad state to a good state and from a good state to a bad
state. In the Gilbert-Elliott model, a wireless channel cannot
offload data in a bad state but can transmit data at a constant
throughput r in a good state. Therefore, the rate vector is
r(S) = [0, r] and the fluid drift vector of the local data queue
is dℓ = [dℓ0, d

ℓ
1] = [λ − cℓ, λ − cℓ − r]. In this case, the

joint stationary distribution of the fluid content process X and
channel state process S can be derived in a closed form based
on the approach introduced in Section II-B, as follows:

F ℓ
0 (x) =

β

α+ β
− β

α+ β
· eξ

ℓx, (23)

F ℓ
1 (x) =

α

α+ β
+

β

α+ β
· d

ℓ
0

dℓ1
· eξ

ℓx, (24)
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0 1

Transition diagram of the 

Gilbert-Elliott Channel

Fig. 4: Transition diagram of the offloaded process Ω under
the Gilbert-Elliott channel. Except the transition from 1+ to
10, all other transitions occur due to the transitions of the
Gilbert-Elliott channel, and their transition times are also the
same. The transition from 1+ to 10 occurs when the fluid
of the local data queue drains to empty before the wireless
channel changes. This transition time is characterized as ξℓdℓ1
according to case (iii) in Theorem 1.

where ξℓ := −α/dℓ0 − β/dℓ1 < 0 is the negative eigenvalue.
The underlying process Ω of the offloaded demand is a

three-state process, whose state space is S(Ω) := {0+, 10, 1+}
and the associated rate vector is r(Ω) := {0, λ− cℓ, r}. Since
the fluid drift vector dℓ has only one positive value, Ω is a
CTMC, as shown in Corollary 1. Its intensity rate matrix can
be derived based on the transition kernel given in Theorem 1
as

Q(Ω) =

 −α 0 α
β −β 0
β ξℓdℓ1 −β − ξℓdℓ1

 . (25)

We depict the transition diagram of Ω in Figure 4.
The stationary distribution of Ω can then be derived as

π(Ω) :=

[
β

α+ β
,

α

α+ β
· ξℓdℓ1
ξℓdℓ1 + β

,
α

α+ β
· β

ξℓdℓ1 + β

]
.

Based on π(Ω), we can analytically obtain the first and second
moments of the offloaded demand as

E[R] =
∑

i∈S(Ω)
r
(Ω)
i π

(Ω)
i = dℓ0

and

E[R2] =
∑

i∈S(Ω)
(r

(Ω)
i )2π

(Ω)
i =

(α+ 2β)(dℓ0)
2 − βdℓ0d

ℓ
1

α+ β
.

To examine the burstiness of the offloaded demand, we adopt
the squared coefficient of variation (SCV) [52] of the station-
ary distribution of R as our measurement metric, i.e.,

SCV =
Var[R]

E[R]
=

E[R2]

E[R]2
− 1 =

β

α+ β
· r

λ− cℓ
. (26)

It can be observed from Equation (26) that the burstiness of
the offloaded demand depends on the stationary distribution
of the wireless channel and the local computing capacity.
In particular, the SCV of the offloaded demand grows with
an increase in the stationary probability of the channel in a
bad state (i.e., β/(α + β)). On the one hand, the offloading
rate is 0 for a longer time when the channel stays in a bad
state with a higher probability. On the other hand, a larger
proportion of the time being in a bad state results in a larger
amount of the workload being buffered in the local data queue.
Therefore, it takes a longer time to drain the local data queue
to empty at the peak offloading rate r during the good state

period. As a result, the offloading rate concentrates more on
the minimum and maximum offloading rates (i.e., 0 and r)
with an increase in the stationary probability of a bad state,
leading to a more bursty offloaded demand. In addition, the
burstiness of the offloaded demand is inversely proportional
to the local computing capacity since it can be easily checked
that a larger cℓ leads to a smaller mean and a larger variance
of R, and hence a larger SCV.

IV. ANALYTICAL PERFORMANCE MODEL

In this section, we continue our analysis of the tandem
queue model and analytically derive the average response time
of the remote data queue given the offloaded demand and the
resource capacity, which is hereinafter also referred to as the
execution capacity, of the backend cloud instance.

A cloud instance takes the offloaded demand from a user as
its input and executes the demand at a maximum speed of c.
Let Yt denote the amount of buffered fluid in the remote data
queue. When Yt > 0, a cloud instance processes the buffered
fluid at a speed of c. When Yt = 0, the cloud instance imme-
diately executes the offloaded demand. Although the offloaded
demand has been characterized as an SMP in Theorem 1, it
is still non-trivial to evaluate the average response time of the
remote data queue, since an SMP is only Markovian at its state
transition epochs, but non-Markovian for the entire process.
Based on the transition kernel Gij(t) given in Theorem 1, for
the process Ω, the sojourn time is non-Markovian only for the
states i+ ∈ S(S)

D+
. Therefore, we propose an approximation

of the SMP Ω as a CTMC Ω̃ := {Ω̃t}t≥0. In particular,
we approximate the sojourn time in state i+ ∈ S(S)

D+
by an

exponential variable with the same mean. The approximation
is summarized in Proposition 1.

Proposition 1. The SMP Ω can be approximated by a CTMC
Ω̃ with the same mean sojourn time, where Ω̃ has the intensity
matrix

Q(Ω̃) =

 Q
(S)
UU 0 Q

(S)
UD

Q
(S)
DU Q

(S)
DD 0

Q
(S)
DU Θ Q

(S)
DD −Θ

 , (27)

in which Q
(S)
DD, Q(S)

DU , Q(S)
UD, and Q

(S)
UU are sub-matrices that

are obtained by partitioning Q(S), and Θ is a diagonal matrix
with each diagonal element as

Θii =
qi+i0∑|S(S)

U |
k=1 pik/(ξℓkd

ℓ
i −Q

(S)
ii )

, i ∈ S(S)
D . (28)

Proof. Let Ti+ := min{Ti+i0 , {Ti+j+}j∈S(S)\i} denote the
sojourn time of state i+ ∈ S(S)

D+
. The distribution of Ti+ is

P
(
Ti+ > t

)
= P

(
min{Ti+i0 , {Ti+j+}j∈S(S)\i} > t

)
,

= P
(
Ti+i0 > t

)∏
j∈S(S)\i

P
(
Ti+j+ > t

)
,

=

|S(S)
U |∑

k=1

pike
−ξℓkd

ℓ
it ·

∏
j∈S(S)\i

e−Q
(S)
ij t,

=

|S(S)
U |∑

k=1

pike
−(ξℓkd

ℓ
i−Q

(S)
ii )t.
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Therefore, the sojourn time Ti+ is also a hyper-exponential
variable and its mean value is

E[Ti+ ] =

|S(S)
U |∑

k=1

pik

ξℓkd
ℓ
i −Q

(S)
ii

, i ∈ S(S)
D . (29)

Our approach is to approximate the sojourn time Ti+ by
an exponential variable with the same mean value. Thus, the
transition rate from state i+ to state i0 ∈ S(S)

D0
is

θi+i0 =
qi+i0

E[Ti+ ]
=

qi+i0∑|S(S)
U |

k=1 pik/(ξℓkd
ℓ
i −Q

(S)
ii )

, (30)

and the transition rate from state i+ to state j+ ∈ S(S)
U+

∪S(S)
D+

can be determined by

θi+j+ =
qi+j+

E[Ti+ ]
= Q

(S)
ij , (31)

where qi+i0 and qi+j+ are derived in Equations (20) and (21).
Partition Q(S) into four sub-matrices,

Q
(S)
DD := {Q(S)

ij }
i,j∈S(S)

D

, Q
(S)
DU := {Q(S)

ij }
i∈S(S)

D ,j∈S(S)
U

,

Q
(S)
UU := {Q(S)

ij }
i,j∈S(S)

U

, Q
(S)
UD := {Q(S)

ij }
i∈S(S)

U ,j∈S(S)
D

,

and define the diagonal matrix Θ with the elements Θii =

θi+i0 , i ∈ S(S)
D . The intensity matrix of the approximate

CTMC Ω̃ can then be derived as Equation (27).

Based on the approximation in Proposition 1, the offloaded
demand depends on the CTMC Ω̃ with an intensity matrix
Q(Ω̃) and a rate vector r(Ω̃) = r(Ω). As a result, the fluid drift
of the remote data queue can be derived as

dei = r
(Ω̃)
i − c, i ∈ S(Ω). (32)

We observe that the joint process {Yt, Ω̃t}t≥0 forms another
MMFM, whose intensity matrix is Q(Ω̃) and drift vector is
de := {dei}i∈S(Ω) . The joint stationary distribution F e

i (y) can
be derived based on the fluid flow analysis, and the average
amount of fluid in the remote data queue is

Ȳ e(c; r(Ω̃), Q(Ω̃)) =
∑

i∈S(Ω)

∫ ∞

y=0

ydF e
i (y), (33)

which depends on the offloaded demand characterized by
(r(Ω̃), Q(Ω̃)) as well as the execution capacity c. Since the
remote data queue has no loss of fluid, its throughput can be
determined by the average offloaded demand as

R̄(r(Ω̃), Q(Ω̃)) =
∑

i∈S(Ω)

π
(Ω̃)
i r

(Ω̃)
i , (34)

where {π(Ω̃)
i }i∈S(Ω) is the stationary distribution of Ω̃. Ac-

cording to Little’s law, the average response time is

W e(c; r(Ω̃), Q(Ω̃)) =
Ȳ e(c; r(Ω̃), Q(Ω̃))

R̄(r(Ω̃), Q(Ω̃))
. (35)

We define the effective execution capacity of the remote data
queue as the minimum capacity that is required to guarantee a
target average response time. Let ĉτ := ĉτ (r(Ω̃), Q(Ω̃)) denote

the effective execution capacity for ensuring the average
response time is no larger than τ , i.e.,

W e(ĉτ , r(Ω̃), Q(Ω̃)) ≤ τ. (36)

Note that given the offloaded demand, the average response
time W e(c, r(Ω̃), Q(Ω̃)) is non-increasing in c. Therefore, ĉτ

can be numerically derived by a bi-section algorithm effi-
ciently. To guarantee an average response time τ , the average
capacity utilization of an instance is

ρτ (r(Ω̃), Q(Ω̃)) =
R̄(r(Ω̃), Q(Ω̃))

ĉτ (r(Ω̃), Q(Ω̃))
. (37)

Consequently, to accommodate the offloaded demand with
various degrees of burstiness, cloud instances need to be
configured with different execution capacities to ensure the
same average response time.

Given a QoS requirement of a user, our performance model
can analytically determine the required volume of the resource
capacity at the backend cloud instance to satisfy this QoS.
The corresponding utilization of this capacity can also be
derived from our performance model. To guarantee the re-
source provisioning decision at the backend cloud instance
with the user’s QoS requirement, our final step is to determine
how to provision the required resource capacity derived from
our performance model in the cloud. Current public cloud
providers mainly offer two types of cloud instances, static
instances and burstable instances. Based on the results derived
from our performance model, in the next section, we will
calculate the corresponding charges of these two instance types
and then determine which should be selected to provision the
required resource capacity with a lower monetary cost.

Remark 2. To the best of our knowledge, we are the first to
analytically model the relationship between the desired QoS
of a user and the correspondingly required resource capacity
at the backend cloud instance, taking into account practical
system models, such as the CTMC wireless channel. Most of
the existing works treat the average response time as a positive
constant, or even zero, while other works use oversimplified
and unrealistic assumptions and models to address the average
response time (see Section II-A for details).

V. MAKING RESOURCE PROVISIONING DECISION

In this section, we examine whether, for an individual user,
a static instance or a burstable instance should be selected to
provision the required resource capacity to satisfy his/her QoS
requirement with a lower monetary cost.

To execute the offloaded demand, a user can configure
the backend cloud instance as a traditional static instance
or a burstable instance.5 A static instance provides a fixed
execution capacity c, which is the maximum speed to execute
the offloaded demand. The execution capacity can be used
up at all times with a fixed price. In contrast, although a
burstable instance also provides an execution capacity c, it has

5There are multiple implementations of burstable instances. In this paper,
we focus on the latest implementation, the unlimited mode (e.g., the t3
instance in Amazon EC2 [24]).
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TABLE II: Resource configurations and pricing parameters from the static instance (SI) and burstable instance (BI) offerings
of Amazon EC2 (Ohio, USA), as of March 2022 [53].

SI BI vCPUs Memory c Ps(c) P̄b(c) P̂b(c) ρc ρ∗c
m5.large t3.large 2 8 GiB 2.5 Mbps 0.096/hour 0.0832/hour 0.1/hour 0.3 0.428
m5.xlarge t3.xlarge 4 16 GiB 5 Mbps 0.192/hour 0.1664/hour 0.2/hour 0.4 0.528

m5.2xlarge t3.2xlarge 8 32 GiB 10 Mbps 0.384/hour 0.3328/hour 0.4/hour 0.4 0.528
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Fig. 5: Effective execution capacity and actual capacity utilization under different wireless channels and local computing
capacities. We set the mean sojourn time of a good channel state to be 1/β = 1 second.

another pricing parameter, ρc, named the baseline. Recall from
Section I that the final charge of a burstable instance depends
on both the offered execution capacity c and its actual capacity
utilization ρ. If ρ is smaller than or equal to ρc, a fixed price
will be charged which is smaller than that of a static instance
with the same execution capacity. However, if ρ is larger than
ρc, an additional charge, which is proportional to the surplus
capacity utilization, namely ρ− ρc, will be imposed.

We compare the prices of a static instance and a burstable
instance that can accommodate the same offloaded demand
and guarantee the same average response time in the remote
data queue. Let Ps(c) denote the price of a static instance with
an execution capacity c. Recall that a burstable instance can
be characterized by its execution capacity c and baseline ρc.
Its price depends on c, ρc, and its actual capacity utilization
ρ, and can be expressed as

Pb(c, ρ) = P̄b(c) + P̂b(c) · [ρ− ρc]
+
, (38)

where P̄b(c) is a capacity-dependent fixed price if the actual
capacity utilization is lower than or equal to the baseline ρc
and P̂b(c) is the price of the surplus capacity utilization. By
letting Pb(c, ρ) ≤ Ps(c), we have the following condition for a

user to subscribe to a burstable instance as the backend cloud
instance with a lower monetary cost:

ρ ≤ ρc +
Ps(c)− P̄b(c)

P̂b(c)
. (39)

Define the right-hand side of Equation (39) as a utilization
threshold ρ∗c , i.e.,

ρ∗c = ρc +
Ps(c)− P̄b(c)

P̂b(c)
. (40)

The instance with an execution capacity c and an actual
capacity utilization ρ can achieve a lower monetary cost by
subscribing to burstable instances when ρ ≤ ρ∗c .

Table II presents the resource configurations and pricing pa-
rameters of three static instances and three burstable instances
from the latest instance offerings of Amazon EC2 (Ohio, USA)
[24], a leading public cloud provider. The six cloud instances
can be categorized into three classes, with each provisioned
with a different execution capacity. For example, the static
instance m5.large and the burstable instance t3.large belong
to the same class with two vCPUs and 8 GiB memory that
can support an execution capacity c = 2.5 Mbps. According
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to Equation (40), we can derive the utilization threshold ρ∗c
for the three classes, as also shown in Table II.

To generalize our results, we consider a future public cloud
where the execution capacity is offered in a more fine-grained
manner. We consider that the utilization threshold ρ∗c , which
is essentially a pricing-related parameter, grows linearly with
regard to the provisioned execution capacity c until a capped
value.6 In this regard, we conduct a linear regression from the
real-world pricing data given in Table II and get the following
relationship between ρ∗c and c:

ρ∗c =

{
0.328 + 0.04c if 0 ≤ c ≤ 5 Mbps,

0.528 if c > 5 Mbps.
(41)

Since the stochasticity of the remote data queue comes
from the wireless channel, it is natural to change the instance
according to the specific wireless channel statistics. In what
follows, we take the Gilbert-Elliott channel model as an ex-
ample to show our results on instance selection. As discussed
in Section III-C, the Gilbert-Elliott channel model can be
characterized by two parameters, the mean sojourn times in
bad states and good states, 1/α and 1/β, respectively. We fix
the input workload λ = 2 Mbps and set the local computing
capacity to cℓ. Given the parameters 1/α, 1/β, λ, and cℓ,
we can derive the offloaded demand with the rate vector r(Ω)

and the intensity matrix Q(Ω). Given the execution capacity
c, we can further determine the effective execution capacity
ĉτ and the actual capacity utilization ρ̂τ to guarantee the QoS
requirements τ ∈ {10, 50, 100} milliseconds.

In Figures 5(a) and 5(b), we fix the local computing capacity
as cℓ = 0, which is equivalent to fixing the throughput of the
remote data queue as R̄ = λ. Recall that the burstiness of
the offloaded demand increases with the mean sojourn time
of a bad state 1/α. It can be observed that the effective
execution capacity and the actual capacity utilization respec-
tively increase and decrease when 1/α grows. This is because
additional execution capacity is needed to accommodate more
bursty workload so that the same average response time can be
guaranteed. Moreover, the more stringent the QoS requirement
is, the greater the execution capacity that will be required. The
actual capacity utilization, which is the ratio of the throughput
and the effective execution capacity (i.e., R̄/ĉτ ), is hence
monotonically decreasing in 1/α. In Figures 5(c) and 5(d),
we fix the mean sojourn time of a bad state to 1/α = 500
milliseconds and investigate the impact of the local computing
capacity cℓ. Although the burstiness of the offloaded demand
increases with cℓ, the effective execution capacity can still
be a decreasing function of cℓ since the throughput of the
remote data queue (i.e., R̄ = λ − cℓ) decreases with cℓ and
can dominate the monotonicity. Moreover, it can also be true
that a larger cℓ can lead to a lower actual capacity utilization
due to the decrease of the throughput with cℓ.

To gain more insight into our theoretical results on the
economical selection of the instance type, for a given cℓ = 0,
we choose ten typical values of 1/α and 1/β that can equally
divide their feasible ranges, 1/α ∈ [50, 500] milliseconds and

6This is one of the commonly used cloud pricing strategies in which the
charged price is linear to the resource provisioned [54].

1/β ∈ [1, 10] seconds, into nine intervals, respectively [51].
By combining the typical values of the two parameters, we
construct 100 Gilbert-Elliott channels for each given QoS
requirement. In this way, we finally obtain 300 scenarios,
which are distinguished by channels and QoS requirements.
We show the SCV and the actual capacity utilization of
each scenario in Figure 6(a). The circle, star, and square
symbols represent the channels with QoS requirements of 10,
50, and 100 milliseconds, respectively. Based on Equations
(39) and (41), we can select different types of instances
for different scenarios. Black and blue distinguish the sce-
narios that are configured to static instances and burstable
instances, respectively. We observe that the scenarios with
stringent QoS requirements (circles) are more likely to have
lower utilizations and save monetary costs with the choice
of burstable instances. Moreover, the scenarios with the high
SCVs (i.e., high degrees of burstiness) are more likely to have
burstable instances be the better choice. In Figure 6(b), we fix
1/α = 500 milliseconds and construct another 300 scenarios
by choosing values for cℓ ∈ [0, 1.6] Mbps, 1/β ∈ [1, 10]
seconds, and τ ∈ {10, 50, 100} milliseconds. With the varying
local computing capacity, the SCVs of the scenarios also vary
in a much larger range and more scenarios are configured to
burstable instances to save monetary costs.

VI. TRACE-DRIVEN SIMULATIONS

In this section, we present numerical results of trace-driven
simulations to further validate our theoretical results, i.e.,
the proposed analytical approximation in Proposition 1 and
the corresponding instance selection. In the simulations, we
adopt the dataset from [17] with 135 LTE traces. Each trace
contains the throughput between users and base stations over
15 minutes at a granularity of one sample per second. In what
follows, we will construct a channel model, namely, a CTMC,
from the traces in the first sub-section. We have developed a
simulator to simulate our tandem fluid queue model. Based
on the trace-driven channel models, in the second sub-section,
we will compare our analytical performance model in terms
of the average response time with the results from the fluid
queue simulator to evaluate the accuracy of our analytical
performance model. In the last sub-section, we will present our
instance selection with different values of the desired average
response time.

A. Constructing Channel Models from Traces

Each trace in [17] has a duration of 15 minutes and records
the throughput of the wireless channel in a granularity of
seconds. We consider that the throughput evolves according to
a CTMC, and we aim to construct its intensity matrix Q and
the corresponding rate vector r. To this end, we first cluster the
throughput values into K groups by the K-means clustering
algorithm. Each cluster represents one state of the wireless
channel, and the average throughput of clusters constitute the
rate vector r. We then construct the intensity matrix Q as

Qij =

{
Number of jumps from cluster i to cluster j

Cumulative time spent in state i i ̸= j,

−
∑

j ̸=i Qij i = j.
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Fig. 6: Instance type selections–burstable instance (BI) or static instance (SI)–for the scenarios with different QoS requirements
τ under the Gilbert-Elliott channel model.

Through an extensive grid search, we choose K = 10. We will
show in the next sub-section that this K value, although not
high, can already produce good accuracy with our analytical
performance model.

B. Validating Performance Model
We first choose three trace-driven channel models for when

users are in each of the following mobility patterns: static,
pedestrian, on a bus, and in a car. We fix the net input workload
λ − cℓ = 2 Mbps.7 For each channel model, we derive the
approximate offloaded demand according to Equations (27)–
(32) and then evaluate the average response time based on
fluid flow analysis and Equations (33)–(35).

Figure 7 shows the approximate average response time
obtained by our performance model in comparison with the
simulated results from the fluid queue simulator under the
same channel model. It can be observed that our approximate
average response time is close to the simulated results for
all of the 12 channel models. In Figure 7(a), we show the
comparison among the three channel models derived from
traces when users are static. The SCVs of the offloaded
demand from these three models are 0.07, 0.38, and 0.55,
respectively. In other words, the degrees of burstiness in
scenarios I, II, and III are increasing. Consequently, given the
same execution capacity, the average response times in the
three scenarios are also increasing. Figures 7(b)–(d) show a
comparison between the numerical results from our analytical
approximation and the simulation when users are pedestrians,
on a bus, and in a car, respectively. The average response
times for mobile users are generally longer than those for static
users because the move-and-stop patterns of mobile users can
generally lead to larger variations in the throughput of the
wireless channels and result in more bursty offloaded demand.

To further show the robustness of our analytical approxima-
tion, we evaluate the relative error of the approximation. For
each trace-driven wireless channel that satisfies the stability
condition (Equation (2)) of the local data queue, we derive
the relative error by

Relative error =
|Analytical value− Simulated value|

|Simulated value|
.

7Based on the default scheduling policy described in Section III-A, the
average response time depends only on the net input rate λ− cℓ.

Figure 8 shows the empirical cumulative distribution function
(CDF) of the relative error when the users are under different
mobility patterns. The 90-th percentiles of the four mobility
patterns, static, pedestrian, bus, and car, are 0.15, 0.17, 0.18,
and 0.20, respectively. Therefore, for each mobility pattern,
the relative error for 90% of the scenarios is below 0.20. It
can also be observed from Figure 8 that our analytical model
is more accurate under the scenarios when users are static than
the scenarios when users are moving (pedestrian, car, bus) with
higher throughput variation.

C. Instance Type Selection

In this sub-section, we continue on to present the eco-
nomical instance selection to provision the required resource
capacity for a desired QoS, as derived by our proposed analyt-
ical performance model. For different scenarios of the desired
QoS and configuration of the wireless channel fitted from the
traces, we plot the selected cloud instance types in Figure
9. It can be observed that under realistic channel models,
burstable instances are selected for most of the scenarios.
Also, the scenarios with stringent QoS requirements, labeled
by circles in Figure 9, have low capacity utilizations and tend
to have burstable instances be the better choice. Moreover, the
scenarios with more bursty demand (i.e., higher SCVs) are also
more likely to have burstable instances be the better choice to
save monetary costs.

VII. CONCLUSIONS AND FUTURE WORK

This paper considers a mobile cloud computing system.
The computation workload that cannot be tackled locally
on an end device is offloaded to a backend cloud instance
for execution via a wireless communication channel. The
stochasticity in the wireless channel leads to burstiness in the
workload offloaded to the backend cloud. Our target question
is how to provision resources at the backend cloud to satisfy a
desired QoS, namely, the average response time. To this end,
we model the mobile cloud computing system as a tandem
queue network and analyze this model using the fluid flow
analysis framework as follows: We first quantify the output
process of the first queue, which characterizes the offloading
process (Section III). We then turn to the second queue,
which characterizes the workload execution process at the
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Fig. 7: Comparison of the average response times obtained by our analytical performance model and simulations for the
channels when mobile users are static, pedestrians, on a bus, and in a car.
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of the relative error under different mobility patterns.

backend cloud, and derive the analytical relationship between
the available resource capacity for workload execution at
the backend cloud and the achieved average response time
(Section IV). Based on our derived performance model, we
finally determine whether subscribing to a traditional static
instance or a burstable instance is more economical with the
user’s desired average response time guaranteed (Section V).
Extensive trace-driven simulations validate our performance
model and demonstrate the final selection of instance type
according to different wireless channel conditions and QoS
requirements (Section VI).

In the future, we plan to further generalize our performance
model and analysis to evaluate the average response time when
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Fig. 9: Instance type selections—burstable instance (BI) or
static instance (SI)—for the scenarios with different QoS
requirements and channel models fitted from traces.

multiple users simultaneously offload computation demand to
the same (congested) backend cloud. Meanwhile, based on
the performance model derived in this paper, we will further
investigate how to derive an optimal offloading policy to best
trade-off the local computing and offloading costs, as well as
the workload delay from the user’s perspective.
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